DETEKSI DAN IDENTIFIKASI BARCODE 2D MENGGUNAKAN METODE EKSTRAKSI CIRI GABOR FILTER DAN IDENTIFIKASI CIRI BACKPROPAGATION NEURAL NETWORK
Abstract
Barcode is a device in the form of a black and white matrix to represent 1 and 0, which aims in storing information. It is divided into two types, namely 1D and 2D barcodes. The different between them is 1D barcode has black and white bars, while 2D barcode has square shape. The method used in this research is grayscaling, floating and screening comprehensive using flood fill pixel reduction algorithm, the perimeter of objects, extraction feature using gabor filter algorithm, the learning method uses backpropagation neural network algorythm, and the identification process using the feedforward method to backpropagation neural network algorythm. The data used in this research is a data of 2D barcode on each of it amounted to 20 users who are taken from the BBM (Blackberry Messenger) contact, due to the lack of data thus a data of the 2D barcode is cropped for 8 times to be the training data and twice to be the test data. The test is done in three stages which the first data set consists of 10 users, the second one consists of 15 users and the last one consists of 20 users. The result of the testing system for those data sets show that the first data set obtains an accuracy of 100%, the second one obtains 93,33% and the last one obtains 66%.
Downloads
References
[2] Kusumadewi, S., Artificial Intelegence (Teknik dan Aplikasinya), Yogyakarta, Graha Ilmu, 2003
[3] Putra, dkk., 2007, Speech Recognition Menggunakan Gabor Wavelet Dan Jaringan Saraf Tiruan Backpropagation Untuk Sistem Keamanan Berbasis Suara, Seminar Nasional Sistem dan Informatika 2007; Bali, 16 November 2007
[4] Banowosari, L. Y,. Oktalia D., 2009, Analisis Tekstur Parket Kayu Jati Menggunakan Metode Filter Gabor, Jurusan Sistem Informasi, Fakultas Ilmu Komputer, Universitas Gunadarma
[5] Kurniawan, D., E., 2012, Identifikasi Citra Wajah Menggunakan Gabor-based Kernel Principal Component Analysis, Teknik Informatika, Politeknik Negeri Batam. Parkway St. Batam Center, Batam diakses dari http://p2m.polibatam.ac.id/wp-content/uploads/2014/07/Microsoft-Word-45-Dwialikhs.pdf, pada tanggal 3 November 2014
[6] Lim, dkk., 2013, Pelacakan Dan Pengenalan Wajah Menggunakan Webcam & Metode Gabor Filter, Fakultas Teknologi Industri, Jurusan Teknik Informatika, Universitas Kristen Petra
[7] Aliaji, S., Harjoko., 2013, Identifikasi Barcode pada Gambar yang Ditangkap Kamera Digital Menggunakan Metode JST, IJCCS, Vol.7,No.2, July 2013, pp.121~132 ISSN:1978-1520, Program Studi S2/S3 Ilmu Komputer, FMIPA UGM - Jurusan Ilmu Komputer dan Elektronika, FMIPA UGM Gedung SIC Lt.3 FMIPA UGM Sekip Utara Bulak sumur Yogyakarta.
[8] Ndun E. S., 2013, Sistem Pendeteksi Pornografi Pada Citra Digital Berdasarkan Fitur Warna dan Bentuk dengan Support Vector Machine (SVM), Skripsi, Jurusan Ilmu Komputer Fakultas Sains dan Teknik, Universitas Nusa Cendana, Kupang.
[9] Han, J., Ma, K-K., 2007. Rotation-invariant and scale-invariant Gabor features for texture image retrieval, Image and Vision Computing 25 (2007) 1474–1481. School of Electrical and Electronic Engineering, Nanyang Technological University, Nanyang 639798, Singapore
[10] Suksmono, Andriyan B., 2006, Dasar-Dasar Pencitraan dan Pengolahan Citra Biomedika ,EL4027 Pengolahan Citra Biomedika, EB7031 Pengolahan Citra Biomedika Lanjut, Modul 1-Image Enhancement, Teknik Elektro dan Informatika- Institut Teknologi Bandung..
Copyright (c) 2018 Jurnal Komputer dan Informatika
This work is licensed under a Creative Commons Attribution 4.0 International License.
The author submitting the manuscript must understand and agree that if accepted for publication, authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under a Creative Commons Attribution (CC-BY) 4.0 License that allows others to share the work with an acknowledgment of the work’s authorship and initial publication in this journal.