TRANSFORMING WOVEN IKAT FABRIC: ADVANCED CLASSIFICATION VIA TRANSFER LEARNING AND CONVOLUTIONAL NEURAL NETWORKS

  • Silvester Tena(1*)
    Universitas Nusa Cendana
  • Bernadectus Yudi Dwiandiyanta(2)
    Universitas Atma Jaya Yogyakarta
  • (*) Corresponding Author
Keywords: woven ikat fabric; classification; CNN; transfer learning

Abstract

The woven ikat fabric from Nusa Tenggara Timur is a local wisdom that must be preserved. Due to its vast array of motifs, users often encounter challenges in its recognition. For this study, the TenunIkatNet dataset was employed. One prominent recognition method involves classification based on the motif type and geographical origin. The efficacy of the classification is heavily contingent upon the method of extraction employed. The Convolutional Neural Network (CNN) method is used for feature extraction and classification processes. This research compares the classification performance of the VGG16 baseline model and the proposed model. The proposed model modifies the baseline at the fully connected layer and the training process from the first convolution layer. Incorporating elements such as Global Average Pooling (GAP), Batch Bormalization (BN), and Dropout has proven instrumental in mitigating overfitting. The transfer learning strategy is used for feature extraction and classification because the model has been intelligently trained on a large dataset. The research findings unequivocally indicate that the performance of the modified model supersedes that of the baseline model. Based on the evaluation metrics, the proposed model is superior to the baseline model with precision, recall, accuracy, and F1-score, respectively 98.73%, 98.54%, 98.54%, and 98.53%

Downloads

Download data is not yet available.

Author Biography

Bernadectus Yudi Dwiandiyanta, Universitas Atma Jaya Yogyakarta

Department of Informatics, Faculty of Industrial Technology, Universitas Atma Jaya Yogyakarta, Yogyakarta

References

I. I. R. Salma, D. K. Syabana, Y. Satria, and R. Christianto, "Diversifikasi desain produk tenun ikat nusa tenggara timur dengan paduan teknik tenun dan teknik batik," Din. Kerajinan dan Batik Maj. Ilm., vol. 35, no. 2, p. 85, Dec. 2018, doi: 10.22322/dkb.v35i2.4174.

https://doi.org/10.22322/dkb.v35i2.4174

D. L. Nadek, Yersi Florida, "Minat konsumen pada tenun ikat NTT di sentra tenunn ikat Ina Ndao kota kupang," e-Journal. Vol. 07 Nomor 02 Tahun 2018, vol. 07, pp. 100-105, 2018.

K. Simonyan and A. Zisserman, "Very deep convolutional networks for large-scale image recognition," 3rd Int. Conf. Learn. Represent. ICLR 2015 - Conf. Track Proc., pp. 1-14, 2015.

M. A. I. Hussain, B. Khan, Z. Wang, and S. Ding, "Woven fabric pattern recognition and classification based on deep convolutional neural networks," Electron., vol. 9, no. 6, pp. 1-12, 2020, doi: 10.3390/electronics9061048.

https://doi.org/10.3390/electronics9061048

Rangkuti, "Content Based Batik Image Retrieval," J. Comput. Sci., vol. 10, no. 6, pp. 925-934, 2014, doi: 10.3844/jcssp.2014.925.934.

https://doi.org/10.3844/jcssp.2014.925.934

F. Shen et al., "A large benchmark for fabric image retrieval," in 2019 IEEE 4th International Conference on Image, Vision and Computing (ICIVC), 2019, pp. 247-251, doi: 10.1109/ICIVC47709.2019.8981065.

https://doi.org/10.1109/ICIVC47709.2019.8981065

Y. Liu, Y. Peng, D. Hu, D. Li, K. P. Lim, and N. Ling, "Image Retrieval using CNN and Low-level Feature Fusion for Crime Scene Investigation Image Database," 2018 Asia-Pacific Signal Inf. Process. Assoc. Annu. Summit Conf. APSIPA ASC 2018 - Proc., no. November, pp. 1208-1214, 2019, doi: 10.23919/APSIPA.2018.8659471.

https://doi.org/10.23919/APSIPA.2018.8659471

D. Iskandar Mulyana and Wartono, "Optimization of Image Classification Using the Convolutional Neural Network (CNN) Algorithm for Cirebon Batik Image Indonesian," Int. J. Sci. Eng. Appl. Sci., no. 7, p. 12, 2021.

N. M. Setiohardjo and A. Harjoko, "Analisis Tekstur untuk Klasifikasi Motif Kain (Studi Kasus Kain Tenun Nusa Tenggara Timur)," IJCCS (Indonesian J. Comput. Cybern. Syst., vol. 10, no. 1, p. 177, 2014, doi: 10.22146/ijccs.6545.

https://doi.org/10.22146/ijccs.6545

M. I. J. Lamabelawa and T. Informatika, "Perbandingan ekstraksi fitur tenun ikat NTT berbasis analisis tekstur," J. HOAQ -Teknologi Inf., vol. 7, no. 1, pp. 481-488, 2016.

B. Baso and N. Suciati, "Temu Kembali Citra Tenun Nusa Tenggara Timur menggunakan Esktraksi Fitur yang Robust terhadap Perubahan Skala, Rotasi, dan Pencahayaan," J. Teknol. Inf. dan Ilmu Komput., vol. 7, no. 2, p. 349, Feb. 2020, doi: 10.25126/jtiik.2020722002.

https://doi.org/10.25126/jtiik.2020722002

S. Tena, R. Hartanto, and I. Ardiyanto, "Content-based image retrieval for fabric images: A survey," Indones. J. Electr. Eng. Comput. Sci., vol. 23, no. 3, p. 1861, Sep. 2021, doi: 10.11591/ijeecs.v23.i3.pp1861-1872.

https://doi.org/10.11591/ijeecs.v23.i3.pp1861-1872

S. Tena, R. Hartanto, and I. Ardiyanto, "Content-Based Image Retrieval for Traditional Indonesian Woven Fabric Images using a Modified Convolutional Neural Network Method," 2023.

https://doi.org/10.31219/osf.io/5v2ty

B. A. Krizhevsky, I. Sutskever, and G. E. Hinton, "ImageNet Classification with Deep Convolutional Neural Networks," Commun. ACM, vol. 60, no. 6, pp. 84-90, 2012.

https://doi.org/10.1145/3065386

C. L. Yang, Y. Harjoseputro, Y. C. Hu, and Y. Y. Chen, "An Improved Transfer-learning for Image-based Species Classification of Protected Indonesians Birds," Comput. Mater. Contin., vol. 73, no. 3, pp. 4577-4593, 2022, doi: 10.32604/cmc.2022.031305.

https://doi.org/10.32604/cmc.2022.031305

A. Saputro, S. Mu'min, Moch. Lutfi, and H. Putri, "Deep Transfer Learning Dengan Model Arsitektur Vgg16 Untuk Klasifikasi Jenis Varietas Tanaman Lengkeng Berdasarkan Citra Daun," JATI (Jurnal Mhs. Tek. Inform., vol. 6, no. 2, pp. 609-614, 2022, doi: 10.36040/ jati.v6i2.5456.

https://doi.org/10.36040/jati.v6i2.5456

M. Liu et al., "Focused dropout for convolutional neural network," Appl. Sci., vol. 12, no. 15, p. 7682, 2022, doi: 10.3390/app12157682.

https://doi.org/10.3390/app12157682

PlumX Metrics

Published
2023-10-14
How to Cite
[1]
S. Tena and B. Dwiandiyanta, “TRANSFORMING WOVEN IKAT FABRIC: ADVANCED CLASSIFICATION VIA TRANSFER LEARNING AND CONVOLUTIONAL NEURAL NETWORKS”, JME, vol. 12, no. 2, pp. 73 - 82, Oct. 2023.
Section
Articles