RANCANG BANGUN GENERATOR SINYAL FISIOLOGIS EMG JARI KELINGKING DAN EOG MATA BERBASIS ARDUINO NANO

Rancang Bangun Generator Sinyal Fisiologis EMG Jari Kelingking dan EOG Mata Berbasis Arduino Nano

  • Hendi Handian Rachmat(1*)
    Institut Teknologi Nasional Bandung
  • Muhammad M. Firdaus(2)
    Institut Teknologi Nasional Bandung
  • Allyfa N. Hernawan(3)
    Institut Teknologi Nasional Bandung
  • Sindi Septiani(4)
    Institut Teknologi Nasional Bandung
  • (*) Corresponding Author
Kata Kunci: Arduino Nano, EMG, EOG, generator sinyal, sinyal fisiologis

Abstrak

Pada studi ini dilakukan perancangan dan implementasi generator sinyal fisiologis EMG jari kelingking dan EOG mata melihat ke kanan dan ke kiri berbasis Arduino Nnano yang bersifat portabel. Studi ini bertujuan untuk menghasilkan perangkat yang dapat menyimpan dan menghasilkan sinyal fisiologis agar perangkat ini dapat dijadikan sebagai pengganti naracoba. Sistem generator sinyal fisiologis diimplementasikan dengan menyimpan data digital sinyal fisiologis naracoba pada memori internal mikrokontroler Arduino Nano. Mikrokontroler ini juga digunakan sebagai pengatur dan pemroses kerja sistem. Adapun pengkondisi sinyal sistem ini menggunakan modul MCP4725 sebagai DAC dengan resolusi 12-bit, OP-Amp LM358 digunakan sebagai penguat sinyal noninverting, LCD 20 4 sebagai tampilan menu sinyal, dan modul joystick sebagai pemilih menu sinyal. Sistem diuji dengan cara membandingkan bentuk sinyal yang dihasilkan oleh sistem generator sinyal dengan data sinyal fisiologis hasil rekaman naracoba (data yang disimpan pada perangkat). Dari hasil pengujian yang dilakukan, bentuk sinyal yang dihasilkan oleh perangkat elektronik secara visual ±100% sama dengan data sinyal fisiologis hasil rekaman, Perbedaan nilai rata-rata amplitudo masih relatif kecil dengan nilai perbedaan terkecil yaitu sebesar 0,1 mV dan nilai perbedaan terbesar yaitu sebesar 4,9 mV.

##plugins.generic.usageStats.downloads##

##plugins.generic.usageStats.noStats##

##submission.authorBiographies##

##submission.authorWithAffiliation##

Program Studi Teknik Elektro Institut Teknologi Nasional Bandung

##submission.authorWithAffiliation##

Program Studi Teknik Elektro,Fakultas Teknologi Industri, Institut Teknologi Nasional, Bandung

##submission.authorWithAffiliation##

Program Studi Teknik Elektro,Fakultas Teknologi Industri, Institut Teknologi Nasional Bandung

##submission.authorWithAffiliation##

Program Studi Teknik Elektro,Fakultas Teknologi Industri, Institut Teknologi Nasional Bandung

Referensi

B. Rim, N. J. Sung, S. Min, and M. Hong, “Deep learning in physiological signal data: A survey,” Sensors (Switzerland), vol. 20, no. 4, 2020, doi: 10.3390/s20040969. [Online]. Available: https://www.mdpi.com/14248220/20/4/969

A. Kaur, “Wheelchair control for disabled patients using EMG/EOG based human machine interface: a review,” J. Med. Eng. Technol., vol. 45, no. 1, pp. 61–74, 2021, doi: 10.1080/03091902.2020.1853838. [Online]. Available:https://pubmed.ncbi.nlm.nih.gov/33302770/

N. Barbara, T. A. Camilleri, and K. P. Camilleri, “A comparison of EOG baseline drift mitigation techniques,” Biomed. Signal Process. Control, vol. 57, p. 101738, 2020, doi: 10.1016/j.bspc.2019.101738. [Online]. Available:https://www.sciencedirect.com/science/article/abs/pii/S1746809419303192

A. Gawad et al., “EOG acquisition system based on ATmega AVR microcontroller,” J. Ambient Intell. Humaniz. Comput., vol. 14, no. 12, pp. 16589–16605, 2023, doi: 10.1007/s12652-023-04622-9. [Online]. Available:https://link.springer.com/content/pdf/10.1007/s12652-023-04622-9.pdf

T. Triadi, I. Wijayanto, and S. Hadiyoso, “Electrooculogram (EOG) based Mouse Cursor Controller Using the Continuous Wavelet Transform and Statistic Features,” Lontar Komput. J. Ilm. Teknol. Inf., vol. 12, no. 1, p. 53, 2021, doi: 10.24843/lkjiti.2021.v12.i01.p06. [Online]. Available:https://ojs.unud.ac.id/index.php/lontar/article/view/70269/39034

H. Vieira, N. Costa, J. F. A. Alves, and L. P. Coelho, “Simulation of Abnormal Physiological Signals in a Phantom for Bioengineering Education,” Int. J. Online Biomed. Eng., vol. 16, no. 14, pp. 107–121, 2020, doi: 10.3991/ijoe.v16i14.16941. [Online]. Available: https://online-journals.org/index.php/i-joe/article/view/16941/8289

Z. Ahmad and N. Khan, “A Survey on Physiological Signal-Based Emotion Recognition,” Bioengineering, vol. 9, no. 11, 2022, doi: 10.3390/bioengineering9110688. [Online]. Available: https://www.mdpi.com/23065354/9/11/688

M. R. Kose, M. K. Ahirwal, and A. Kumar, “A new approach for emotions recognition through EOG and EMG signals,” Signal, Image Video Process., vol. 15, no. 8, pp. 1863–1871, 2021, doi: 10.1007/s11760-021-01942-1. [Online]. Available: https://link.springer.com/article/10.1007/s11760-021-01942-1

A. Pudji, R. Mak’ruf, and W. Wirasa, “Design and Build ECG Simulator,” Int. J. Sci. Res., vol. 8, no. 10, pp. 1084–1087, 2018, [Online]. Available: www.ijsr.net [Online]. Available: https://jurusankebidanan.poltekkesdepkessby.ac.id/wpcontent/uploads/2020/01/3.Design-and-Build.pdf

W. Muldayani, A. M. N. Imron, K. Anam, S. Sumardi, W. Widjonarko, and Z. V. E. Fitri, “Pengenalan Pola Sinyal Electromyography (EMG) pada Gerakan Jari Tangan Kanan,” ELKOMIKA J. Tek. Energi Elektr. Tek. Telekomun. Tek. Elektron., vol. 8, no. 3, p. 591, 2020, doi: 10.26760/elkomika.v8i3.591. [Online]. Available: https://ejurnal.itenas.ac.id/index.php/elkomika/article/view/3646/2376

K. Sharma, N. Jain, and P. K. Pal, “Detection of eye closing/opening from EOG and its application in robotic arm control,” Biocybern. Biomed. Eng., vol. 40, no. 1, pp. 173–186, 2020, doi: 10.1016/j.bbe.2019.10.004. [Online]. Available: https://www.sciencedirect.com/science/article/abs/pii/S0208521619304723

O. B. D. C. Cahyo and N. Kholis, “Rancang Bangun Simulator Elektrokardiogram Menggunakan FPGA yang Terintegrasi dengan Software Python,” J. Tek. Elektro, vol. 08, no. 03, pp. 619–625, 2019. [Online]. Available: https://ejournal.unesa.ac.id/index.php/JTE/article/view/29276/26812

I. D. Gede, B. Whinangun, A. Pudji, M. R. Makruf, B. Utomo, and S. Luthfiyah, “Electrocardiograph Simulator Berbasis Mikrokontroler,” vol. 12, no. 1, pp. 5–13, 2019, doi: 10.35882/teknokes.v12i1.2. [Online]. Available: https://teknokes.poltekkesdepkessby.ac.id/index.php/Teknokes/article/download/14/2

J. C. Edelmann, D. Mair, D. Ziesel, M. Burtscher, and T. Ussmueller, “An ECG simulator with a novel ECG profile for physiological signals,” J. Med. Eng. Technol., vol. 42, no. 7, pp. 501–509, 2018, doi: 10.1080/03091902.2019.1576788. [Online]. Available:https://pubmed.ncbi.nlm.nih.gov/30773952/

M. J. Burke and M. Nasor, “An accurate programmable ECG simulator,” J. Med. Eng. Technol., vol. 25, no. 3, pp. 97–102, 2001, doi: 10.1080/03091900110051640. [Online]. Available: https://pubmed.ncbi.nlm.nih.gov/11530829/

S. E. De Lucena, “ECG simulator for testing and servicing cardiac monitors and electrocardiographs,” 18th IMEKO TC4 Symp. Meas. Electr. Quant. 2011, Part Metrol. 2011, pp. 109–112, 2011. [Online]. Available: https://www.imeko.org/publications/tc42011/IMEKO-TC4-2011-024.pdf

A. J. Golparvar and M. K. Yapici, “Graphene Smart Textile-Based Wearable Eye Movement Sensor for Electro-Ocular Control and Interaction with Objects,” J. Electrochem. Soc., vol. 166, no. 9, pp. B3184–B3193, 2019, doi: 10.1149/2.0241907jes. [Online]. Available: https://iopscience.iop.org/article/10.1149/2.0241907jes/pdf

C. Belkhiria, A. Boudir, C. Hurter, and V. Peysakhovich, “EOG-Based Human–Computer Interface: 2000–2020 Review,” pp. 1–19, 2022. doi: 10.3390/s22134914. [Online]. Available: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9269776/pdf/sensors-22-04914.pdf

I. Muchlis, R. Maulana, and H. Fitriyah, “Implementasi Pengenalan Pergerakan Bola Mata Menggunakan Elektrode Dengan Exponential Filter,” Pengemb. Teknol. Inf. dan Ilmu Komput., vol. 2, no. 9, pp. 3093–3102, 2018. [Online]. Available: https://j-ptiik.ub.ac.id/index.php/j-ptiik/article/view/2545/941

PlumX Metrics

Diterbitkan
2025-04-30
Bagian
Articles