SISTEM MONITORING SINYAL ELEKTROKARDIOGRAM (EKG) MENGGUNAKAN THINGSPEAK CLOUD COMPUTING

  • Amin Ajaib Maggang(1*)
    Universitas Nusa Cendana
  • Beby H. A. Manafe(2)
    Universitas Nusa Cendana
  • Sarlince O. Manu(3)
    Universitas Nusa Cendana
  • Johanis F. M. Bowakh(4)
    Universitas Nusa Cendana
  • (*) Corresponding Author
Keywords: ad8232 sensor, electrocardiograph, internet of things, ThingSpeak

Abstract

Developments in electronics and software have led to many cloud server applications that can be integrated with Arduino Uno to create an inexpensive cardiovascular health monitoring system. Therefore, this study aims to build a heart health monitoring system based on the internet of things by utilizing the free ThingSpeak server account and the AD8232 ECG sensor. The results show that the developed system can send ECG data and display it on the ThingSpeak server, although only the QRS and RR segments of the ECG signal can be displayed properly and meet its normal standards. Apart from this, the system is also able to automatically calculate and display the heart rate on the output of the ThingSpeak server every 15 seconds, so that heart health can be monitored in real-time.

Downloads

Download data is not yet available.

Author Biographies

Beby H. A. Manafe, Universitas Nusa Cendana

Program Studi Teknik Elektro, FST. Universitas Nusa Cendana

Sarlince O. Manu, Universitas Nusa Cendana

Program Studi Teknik Elektro, FST. Universitas Nusa Cendana

Johanis F. M. Bowakh, Universitas Nusa Cendana

Program Sudi Teknik Elektro, FST, Universitas Nusa Cendana

References

WHO. (2021, 1 Maret 2021). Cardiovascular Diseases. Available: https://www.who.int/health-topics/cardiovascular-diseases#tab=tab_1

M. Naazneen, S. Fathima, S. H. Mohammadi, S. I. L. Indikar, A. Saleem, and M. Jebran, "Design and Implementation of ECG monitoring and heart rate measurement system," International Journal of Engineering Science and Innovative Technology (IJESIT), vol. 2, pp. 456-465, 2013.

R. D. Anderson, S. Kumar, R. Parameswaran, G. Wong, A. Voskoboinik, H. Sugumar, et al., "Differentiating right-and left-sided outflow tract ventricular arrhythmias: classical ECG signatures and prediction algorithms," Circulation: Arrhythmia and Electrophysiology, vol. 12, p. e007392, 2019.

S. Das, S. Pal, and M. Mitra, "Arduino-based noise robust online heart-rate detection," Journal of medical engineering & technology, vol. 41, pp. 170-178, 2017.

M. C. T. Manullang, J. Simanjuntak, and A. L. Ramdani, "Implementation of AD8232 ECG Signal Classification Using Peak Detection Method For Determining RST Point," Indonesian Journal of Artificial Intelligence and Data Mining, vol. 2, pp. 61-66, 2019.

N. K. Jumaa, "Survey: internet of thing using FPGA," Iraq J. Electrical and Electronic Engineering, vol. 13, 2017.

A. A. Mohamad, N. K. Jumaa, and S. H. Majeed, "Thingspeak Cloud Computing Platform Based ECG Diagnose System," International Journal of Computing and Digital Systems, vol. 8, pp. 11-18, 2019.

ThingSpeak. (2020, 01 Maret 2021). ThingSpeak™ Licensing FAQ. Available: https://thingspeak.com/pages/license_faq

B. E. Jin, H. Wulff, J. H. Widdicombe, J. Zheng, D. M. Bers, and J. L. Puglisi, "A simple device to illustrate the Einthoven triangle," Advances in physiology education, vol. 36, pp. 319-324, 2012.

A. L. Goldberger, "Goldberger’s clinical electrocardiography," ECG basics: waves, intervals, and segments, vol. 2, pp. 8-14, 2013.

F. Roberto, "Automatic heartbeat monitoring system," 2019.

PlumX Metrics

Published
2021-04-24
How to Cite
[1]
A. Maggang, B. Manafe, S. Manu, and J. Bowakh, “SISTEM MONITORING SINYAL ELEKTROKARDIOGRAM (EKG) MENGGUNAKAN THINGSPEAK CLOUD COMPUTING”, JME, vol. 10, no. 1, pp. 1 - 7, Apr. 2021.
Section
Articles