Model Persamaan Diferensial Orde Satu Untuk Masalah Kinematika Garis Lurus

  • Ofirenty E Nubatonis(1*)
    Universitas Nusa Cendana
  • (*) Corresponding Author
Keywords: acceleration, differential, equation, kinematics, motion, velocity

Abstract

In the history of mathematical modeling, differential equations emerged as a tool to solve various problems in human life, including the development of theories in mathematics. In this research, differential equation models will be constructed for straight line kinematics problems. The method used is the literature review method. The differential equation models obtained are (1) The differential equation  with the initial condition  is a differential equation model to express the problem of changing the position of the object at time t. The integration of this model will produce an equation for the position of an object, (2) the equation  with the initial conditionwhich states the change in velocity at any time t. The integration of this model will produce an equation for the velocity of an object moving in a straight path, (3) The equation  to express Newton's Second Law and with the initial condition  then the integration will produce a velocity equation that takes into account the mass of the object and the resultant force is given, (4) the equation   with the initial condition  so that the integration will produce a velocity equation for free falling objects and (5) a first order linear ordinary differential equation  and Bernoulli's differential equation  to express the change in the velocity of an object in free fall which is affected by air friction.

Downloads

Download data is not yet available.

References

Finizio. N dan Ladas. G. 1982. An Introduction to Differential Equation with Diferennce Equation , Forier Analysis, and Partial Equation. New York: McGraw-Hill,
Joko, Purwanto. 2014. Hukum Newton Tentang Gerak dalam Ruang Fase Tak Komutatif. Jurnal J. Kaunia 10(1), 30-35
Nuryadi. 2018. Pengantar Persamaan Diferensial Elementer dan Penerapananya (Online). Yogyakarta : Universitas Mercubuana. Tersedia pada http://lppm.mercubuana-yogya.ac.id/wp-content/uploads/2019/01/Nuryadi_Buku-Ajar_Pengantar-Persamaan-Diferensial-dan-Aplikasinya_2018.pdf . Diakses pada 15 April 2021.
Rifanti, Marina Utti, dkk. 2019. Model Matematika Arus Listrik dengan Persamaan Diferensial Metode Koefisien Tak Tentu. Jurnal Matematika Integratif, 15(1), 1 – 8.
Ross, L Shepley. 2004. Differential Equation. Delhi : Rajiv Book Binding House.
Wijayanto & Susilawati. 2015. Rancangan Kinematika Gerak Menggunakan Alat Eksperimen Air Track Untuk Media Pembelajaran Fisika Berbasis Video. Jurnal Informatika UPGRIS, 1(2), 132-139
Yuningsih, Nani & Sardjito. 2020. Gerak Vertikal Benda Berukuran Berbeda yang Jatuh Tanpa Kecepatan Awal dan Bergesekan dengan Udara. Prosiding The 11th Industrial Research Workshop and National Seminar Bandung, 710-714

PlumX Metrics

Published
2021-05-15
How to Cite
Nubatonis, O. (2021). Model Persamaan Diferensial Orde Satu Untuk Masalah Kinematika Garis Lurus. FRAKTAL: JURNAL MATEMATIKA DAN PENDIDIKAN MATEMATIKA, 2(1), 54-63. https://doi.org/10.35508/fractal.v2i1.4039
Section
Articles