Problem Posing: Strategi yang Memfasilitasi Keterampilan Berpikir Tingkat Tinggi Matematika Siswa
Abstract
Higher Order Thinking Skills (HOTS) is one of the main goals in learning mathematics. Learning through problem solving is the key to developing this ability. Problem solving itself can be interpreted as an activity to solve complex problems which is problems that do not have automatic solutions but require reasoning to solve them. Generally, problems like these are given by the teacher during learning, then ask students to solve, with hope that students will learn and the development the HOTS during solving these problems. On the other hand, learning to solve problems can also be done using problems raised by the students themselves or known as problem posing. This strategy directs students to create new problems or reformulate problems based on the problems or information provided and then solve these new problems. This article aims to discuss problem posing strategy and examples of problem design using this strategy in integral calculus learning. Furthermore, how the problem posing strategy can facilitate students' mathematics HOTS during learning is also discussed in this article.
Downloads
References
Anderson, L. W., & Krathwohl, D. R. (Eds.). (2014). Kerangka landasan untuk pembelajaran, pengajaran, dan asesmen [terjemahan]. Yogyakarta: Pustaka Pelajar.
Arikan E. E., & Unal, H. (2015). Investigation of problem-solving and problem-posing abilities of seventh-grade students. Educational Sciences: Theory and Practice, 15 (5), doi: 10.12738/estp.2015.5.2678
Brookhart, S. M. (2010). How to assess higher order thinking skills in your classroom. Alexandria: ASCD
Blegur, I. K. S., & Retnopwati, E. (2018) Designs of goal free problems for learning central and inscribed angles. J. Phys.: Conf. Ser. 1097 012128
Christou, C., Mousoulides,N., Pittalis, M., Pitta-Pantazi, D & Sriraman, B. (2005). An Empirical Taxonomy of Problem Posing Processes, ZDM, 37(5), 149-158
Freudenthal, H. (1991). Revisiting Mathematics Education. Dordrecht: Kluwer Academic
Hadi, S. 1995. Metodologi Research Jilid 3. Metodologi Research Jilid 3. Yogyakarta: Andi Offset
Kantowski, M. G. (1977). Process involved in mathematical problem solving. Journal for Research in Mathematics Education, 8(3), 163-180.
King, F. J., Goodson, L., & Rohani, F. (2010). Higher order thinking skills: Definition, teaching strategies assessment. New York City: Educational Service Program
Leung, S. K. S. (2013). Teachers implementing mathematical problem posing in the classroom: challenges and strategies. Educational Studies in Mathematics, 83(1), 103-116, doi: 10.1007/s10649-012- 9436-4
Lin, P. (2014). Supporting teachers on designing problem-posing tasks as a tool of assessment to understand students’ mathematical learning, Proceeding of the 28th Conference of The International Group for The Psychology of Mathematics Education, 3, 257-264.
Muhadjir, N. (1998). Metodologi Penelitian Kualitatif. Yogyakarta: Rake Sarasin.
NCTM. (2010). Why is teaching with problem solving is important to student learning?. USA: NCTM
NCTM. (2000). Principles and standards for school mathematics. Reston, VA: Author.
Nitko, A. J., & Brookhart, S. M. (2011). Educational assessment of students (6th ed.). Boston, MA: Pearson Education, Inc.
Retnowati, E. (2016). Faded example as a tool to acuire and automate mathematics knowledge. International Conference on Mathematics, Science, and Education
Retnowati, E., Fathoni, Y., & Chen, O. (2018). Mathematics problem solving skill acquisition: learning by problem posing or by problem solving?. Jurnal Cakrawala Pendidikan, 37 (1), doi:http://dx.doi.org/10.21831/cp.v37i1.18787
Silver, E. A. (1994). On Mathematical Problem Posing. For the Learning of Mathematics, 14 (1), 19-28
Silver,E. A. (2013). Problem-posing research in mathematics education: looking back, looking around, and looking ahead. Educational Studies in Mathematics, 83(1), 157-162. doi: 10.1007/s10649-013- 9477-3
Silver, E. A., & Cai, J. (1996). An Analysis of Arithmetic Problem Posing by Middle School Students. Journal for Research in Mathematics Education, 27 (5), 521-539,1996, doi: 10.2307/749846
Sugiman. (2008). Pandangan matematika sebagai aktivitas insani beserta dampak pembelajarannya.Jurnal Pendidikan Matematika. 2(2), 63-72
Thompson, T. (2008). Mathematics teachers' interpretation of higher-order thinking in bloom's taxonomy. International Electronic Journal of Mathematics Education, 3(3), 96-109
Toumasis, C. (1997) The NCTM standards and the philosophy of mathematics. Studies in Philosophy and Education 16, 317-330
Zohar, A., & Dori, Y. J. (2000). Higher order thinking skills and low achieving students: Are they mutually exclusive?. Journal of the Learning Sciences, 12(2), 145-181. doi: 10.1207/s15327809jls1202_1
Zulfikar, Z., Anwar, A., & Yusrizal, Y. (2020). The Optimism of Junior High School Students In Mathematical Problem Posing. IOP Conf. Series: Journal of Physics: Conf. Series 1460 (2020) 012037 doi:10.1088/1742-6596/1460/1/012037
Copyright (c) 2022 FRAKTAL: JURNAL MATEMATIKA DAN PENDIDIKAN MATEMATIKA
This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.
- Hak publikasi atas semua materi naskah jurnal yang diterbitkan/dipublikasikan dalam situs E-Journal Fraktal ini dipegang oleh dewan redaksi dengan sepengetahuan penulis (hak moral tetap milik penulis naskah).
- Ketentuan legal formal untuk akses artikel digital jurnal elektronik ini tunduk pada ketentuan lisensi Creative Commons Attribution-ShareAlike (CC BY-SA), yang berarti Jurnal Fraktal berhak menyimpan, mengalih media/format-kan, mengelola dalam bentuk pangkalan data (database), merawat, dan mempublikasikan artikel tanpa meminta izin dari Penulis selama tetap mencantumkan nama Penulis sebagai pemilik Hak Cipta.
- Naskah yang diterbitkan/dipublikasikan secara cetak dan elektronik bersifat open access untuk tujuan pendidikan, penelitian, dan perpustakaan. Selain tujuan tersebut, dewan redaksi tidak bertanggung jawab atas pelanggaran terhadap hukum hak cipta.