Ideal Prima Pada Daerah Dedekind Berupa Polinom Faktor Berderajat Satu Dari Ring Bilangan Bulat
Abstract
Dedekind Domain and prime ideals are part of the topics discussed in the field of abstract algebra. An integral Domain is said to be the Dedekind Domain if and only if it is a Noetherian, integrally closed, and each of its prime ideals is a maximum ideal. In 2019, Maulana discussed the prime ideal’s properties of Gauss integers. At present, there is no research about prime ideals of specific Dedekind Domain, because of that reason, in this article we will give some prime ideals and prime ideals’ characteristics in the area of the Dedekind Domain Z[x]/<x^2>. In this article, it is found the conclusion I=<x> and I=<k,x> are prime ideals in that Dedekind Domain.
Downloads
References
Amir, A. K., Astuti, P., & Muchtadi-Alamsyah, I. (2010). Minimal Prime Ideals of Ore Extensions over Commutative Dedekind Domains. arXiv preprint arXiv:1002.0278.
Astuti, P., & Wimmer, H. K. (2006). Regular submodules of torsion modules over a discrete valuation domain. Czechoslovak Mathematical Journal, 56(2), 349-357.
Berrick, A.J., & Keating, M.E. (2000). Cambridge Studies in Advanced Mathematics 65 An Introduction to Rings and Modules with K-Theory in View. United Kingdom: Cambridge University Press.
Fraleigh, J.B. (2013). A First Course in Abstract Algebra (7th ed). United Kingdom: Pearson Education Limited.
Gazir, A., & Wardhana, I. G. A. W. (2019). Subgrup Non Trivial Dari Grup Dihedral. Eigen Mathematics Journal 1(2), 73-76.
Herstein, I.N. (1975). Topics in Algebra (2nd ed). United States of America: John Wiley & Sons.
Hijriati, N., Wahyuni, S., & Wijayanti, I. E. (2018, September). Injectivity and Projectivity Properties of the Category of Representation Modules of Rings. In Journal of Physics: Conference Series (Vol. 1097, No. 1, p. 012078). IOP Publishing.
Juliana, R., Wardhana, I. G. A. W., & Irwansyah. (2021, February). Some characteristics of cyclic prime, weakly prime and almost prime submodule of Gaussian integer modulo over integer. In AIP Conference Proceedings (Vol. 2329, No. 1, p. 020004). AIP Publishing LLC.
Maulana, F., Wardhana, I. G. A. W., Switrayni, N. W., & Aini, Q. (2018). Bilangan Prima dan Bilangan tak Tereduksi pada Bilangan bulat Gauss. In Prosiding Seminar Nasional APPPI II (pp. 383-387).
Maulana, F., Wardhana, I. G. A. W., & Switrayni, N. W. (2019). Ekivalensi Ideal Hampir Prima dan Ideal Prima pada Bilangan Bulat Gauss. Eigen Mathematics Journal, 1-5.
Misuki, W. U., Wardhana, I. G. A. W., & Switrayni, N. W. (2021, March). Some Characteristics of Prime Cyclic Ideal On Gaussian Integer Ring Modulo. In IOP Conference Series: Materials Science and Engineering (Vol. 1115, No. 1, p. 012084). IOP Publishing.
Kleiner, I. (2007). A History of Abstract Algebra. United States of America: Birkh user Boston.
Rotman, J.J. (2005). A First Course in Abstract Algebra (3rd ed). United States of America: Pearson Education Limited.
Saleh, K., Astuti, P., & Muchtadi-Alamsyah, I. (2016). On the structure of finitely generated primary modules. JP Journal of Algebra, Number Theory and Applications, 38(5), 519.
Sivaramakrishnan, R. (2019). Certain Number-Theoretic Episodes in Algebra(2nd ed). United States of America: Chapman and Hall/CRC.
Switrayni, N. W., Wardhana, I. G. A. W., & Aini, Q. (2022). On Cyclic Decomposition Of Z-Module M_ {m×r}(Z_n), Journal of Fundamental Mathematics and Applications, 5(1), 47-51
Wahyuni, S., Wijayanti, I. E., Yuwaningsih, D. A., & Hartanto, A. D. (2021). Teori ring dan modul. UGM PRESS.
Wardhana, I., & Astuti, P. (2015). Karakteristik Submodul Prima Lemah dan Submodul Hampir Prima pada. Jurnal Matematika & Sains, 19(1), 16-20
Wardhana, I. G. A. W., Astuti, P., & Muchtadi-Alamsyah, I. (2016). On almost prime submodules of a module over a principal ideal domain. JP Journal of Algebra, Number Theory and Applications, 38(2), 121-138.
Wardhana, I. G. A. W., Nghiem, N. D. H., Switrayni, N. W., & Aini, Q. (2021, November). A note on almost prime submodule of CSM module over principal ideal domain. In Journal of Physics: Conference Series (Vol.2106, No. 1, p. 012011). IOP Publishing.
Wardhana, I. G. A. W. W., & Maulana, F. (2021). Sebuah Karakteristik dari Modul Uniserial dan Gelanggang Uniserial. Unisda Journal of Mathematics and Computer Science (UJMC), 7(2), 9-18.
Wardhana, I. G. A. W. (2022). The Decomposition of a Finitely Generated Module over Some Special Ring. JTAM (Jurnal Teori dan Aplikasi Matematika), 6(2), 261-267.
Wijayanti, I. E., & Wisbauer, R. (2009). On coprime modules and comodules. Communications in Algebra, 37(4), 1308-1333.
Yuwaningsih, D. A., & Wijayanti, I. E. (2015). On jointly prime radicals of (R, S)-modules. Journal of the Indonesian Mathematical Society, 25-34
Copyright (c) 2022 FRAKTAL: JURNAL MATEMATIKA DAN PENDIDIKAN MATEMATIKA
This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.
- Hak publikasi atas semua materi naskah jurnal yang diterbitkan/dipublikasikan dalam situs E-Journal Fraktal ini dipegang oleh dewan redaksi dengan sepengetahuan penulis (hak moral tetap milik penulis naskah).
- Ketentuan legal formal untuk akses artikel digital jurnal elektronik ini tunduk pada ketentuan lisensi Creative Commons Attribution-ShareAlike (CC BY-SA), yang berarti Jurnal Fraktal berhak menyimpan, mengalih media/format-kan, mengelola dalam bentuk pangkalan data (database), merawat, dan mempublikasikan artikel tanpa meminta izin dari Penulis selama tetap mencantumkan nama Penulis sebagai pemilik Hak Cipta.
- Naskah yang diterbitkan/dipublikasikan secara cetak dan elektronik bersifat open access untuk tujuan pendidikan, penelitian, dan perpustakaan. Selain tujuan tersebut, dewan redaksi tidak bertanggung jawab atas pelanggaran terhadap hukum hak cipta.