FAST IMAGE RETRIEVAL BERBASIS LOCALITY SENSITIVE HASHING DAN CONVOLUTIONAL NEURAL NETWORK

  • Silvester Tena(1*)
    Universitas Nusa Cendana
  • Bernadectus Yudi Dwiandiyanta(2)
    Universitas Atma Jaya Yogyakarta
  • Wenefrida Tulit Ina(3)
    Universitas Nusa Cendana
  • (*) Corresponding Author
Keywords: Image retrieval, CNN, LSH, ED, HD

Abstract

Image retrieval systems with a fast search process are still challenging for researchers. Fast search methods are one of the most important parts of image retrieval. One of the techniques used is reducing feature dimensions using the Locality Sensitivity Hashing (LSH) method. Apart from that, feature types and image extraction methods are selected. Image feature extraction uses the Convolutional Neural Network (CNN) method in this research. Measuring similarity using the Hamming Distance (HD) and Euclidean Distance (ED) methods. The datasets used are TenunIkatNet and Batik300. The LSH method forms a hash table as a bucket to group similar images based on probability and in the form of binary code. The research results show that the LSH+HD+ED method provides faster search results than ED. The image retrieval time for the LSH+HD+ED and ED methods is 0.252 seconds and 4.5 seconds, respectively, for the TenunIkatNet dataset. Meanwhile, the Batik300 dataset is 0.03 seconds and 0.9 seconds. Using the LSH method is very effective for large datasets. Retrieval accuracy using the LSH+HD+ED method was 99.705% and 84% for the TenunIkatNet and Batik300 datasets, respectively. Meanwhile, the ED method produces 94.17% and 82% retrieval accuracy, respectively.

Downloads

Download data is not yet available.

Author Biographies

Bernadectus Yudi Dwiandiyanta, Universitas Atma Jaya Yogyakarta

Program Studi Informatika, Fakultas Teknologi Industri, Universitas Atma Jaya Yogyakarta

Wenefrida Tulit Ina, Universitas Nusa Cendana

Program Studi Teknik Elektro, Fakultas SAins dan Teknik, Universitas Nusa Cendana

References

Y. Luo, W. Li, X. Ma, and K. Zhang, “Image Retrieval Algorithm Based on Locality-Sensitive Hash Using Convolutional Neural Network and Attention Mechanism,” Information, vol. 13, no. 10, p. 446, Sep. 2022, doi: 10.3390/info13100446.

J. Xiang, N. Zhang, R. Pan, and W. Gao, “Fabric retrieval based on multi-task learning,” IEEE Trans. Image Process., vol. 30, no. 2, pp. 1570–1582, 2021, doi: 10.1109/TIP.2020.3043877.

J. Xiang, N. Zhang, R. Pan, and W. Gao, “Fabric image retrieval system using hierarchical search based on deep convolutional neural network,” IEEE Access, vol. 7, pp. 35405–35417, 2019, doi: 10.1109/ACCESS.2019.2898906.

J. Wang et al., “Automatic Assessment of Fabric Smoothness Appearance Based on a Compact Convolutional Neural Network with Label Smoothing,” IEEE Access, vol. 8, pp. 26966–26974, 2020, doi: 10.1109/ACCESS.2020. 2971506.

N. Zhang, R. Shamey, J. Xiang, R. Pan, and W. Gao, “A novel image retrieval strategy based on transfer learning and hand-crafted features for wool fabric,” Expert Syst. Appl., vol. 191, no. November 2021, p. 116229, 2022, doi: 10.1016/j.eswa.2021.116229.

A. Y. Wicaksono, N. Suciati, C. Fatichah, K. Uchimura, and G. Koutaki, “Modified convolutional neural network architecture for batik motif image classification,” IPTEK J. Sci., vol. 2, no. 2, pp. 26–30, 2017, doi: 10.12962/j23378530.v2i2.a2846.

H. Prasetyo and B. A. Putra Akardihas, “Batik image retrieval using convolutional neural network,” TELKOMNIKA (Telecommunication Comput. Electron. Control., vol. 17, no. 6, p. 3010, Dec. 2019, doi: 10.12928/telkomnika.v17i6.12701.

B. Baso and N. Suciati, “Temu Kembali Citra Tenun Nusa Tenggara Timur menggunakan Esktraksi Fitur yang Robust terhadap Perubahan Skala, Rotasi, dan Pencahayaan,” J. Teknol. Inf. dan Ilmu Komput., vol. 7, no. 2, p. 349, Feb. 2020, doi: 10.25126/jtiik.2020722002.

S. Tena, R. Hartanto, and I. Ardiyanto, “Content-Based Image Retrieval for Traditional Indonesian Woven Fabric Images Using a Modified Convolutional Neural Network Method,” J. Imaging, vol. 9, no. 8, 2023, doi: 10.3390/jimaging9080165.

A. E. Minarno, M. Y. Hasanuddin, and Y. Azhar, “Batik Images Retrieval Using Pre-trained model and K-Nearest Neighbor,” Int. J. Informatics Vis., vol. 7, no. 1, pp. 115–121, 2023, doi: 10.30630/joiv.7.1.1299.

J. Yang and G. Yang, “Modified convolutional neural network based on dropout and the stochastic gradient descent optimizer,” Algorithms, vol. 11, no. 3, 2018, doi: 10.3390/a11030028.

S. Khan, H. Rahmani, S. A. A. Shah, and M. Bennamoun, “A Guide to Convolutional Neural Networks for Computer Vision,” Synth. Lect. Comput. Vis., vol. 8, no. 1, pp. 1–207, Feb. 2018, doi: 10.2200/S00822ED1V01Y201712COV015.

O. García-Olalla, E. Alegre, L. Fernández-Robles, E. Fidalgo, and S. Saikia, “Textile retrieval based on image content from CDC and webcam cameras in indoor environments,” Sensors (Switzerland), vol. 18, no. 5, pp. 1–20, 2018, doi: 10.3390/s18051329.

A. Qayyum, S. M. Anwar, M. Awais, and M. Majid, “Medical image retrieval using deep convolutional neural network,” Neurocomputing, vol. 266, pp. 8–20, 2017, doi: 10.1016/j.neucom.2017.05.025.

M. Liu et al., “Focused dropout for convolutional neural network,” Appl. Sci., vol. 12, no. 15, p. 7682, 2022, doi: 10.3390/app12157682.

PlumX Metrics

Published
2024-04-29
How to Cite
[1]
S. Tena, B. Dwiandiyanta, and W. Ina, “FAST IMAGE RETRIEVAL BERBASIS LOCALITY SENSITIVE HASHING DAN CONVOLUTIONAL NEURAL NETWORK”, JME, vol. 13, no. 1, pp. 1 - 9, Apr. 2024.
Section
Articles