KLASIFIKASI BENIH JAGUNG UNGGUL MENGGUNAKAN METODE MACHINE LEARNING K-NEAREST NEIGHBORS
Abstract
Classifying the quality of corn seeds by manual visual observation takes a long time. It also produces products with uneven quality due to visual limitations, fatigue, and differences in observer perception. This research aims to classify superior corn seeds using the machine learning method, namely K-Nearest Neighbors (K-NN). The research data uses 500 images of corn seeds consisting of 400 training images and 100 test images. Extraction of corn image features uses the Gray Level Co-occurrence Matrix (GLCM) method to obtain texture characteristics. The texture characteristic values of metric natural corn images concist of contrast, energy, homogeneity and correlation. Based on the image texture characteristic values, classification is carried out using the K-Nearest Neighbor (K-NN) method. The classification results consist of classes of viable and non-viable corn seeds. The performance evaluation metric method calculates accuracy, sensitivity and specificity using a confusion matrix. This research shows that the value of k=5 is the most optimal, and the accuracy, sensitivity and sensitivity values, respectively, are 75%, 77% and 72% found in the ninth fold
Downloads
References
A. Adrizal, D. Anggraini, N. Novita, S. Santosa, and A. Andasuryani, “Pendugaan Kualitas Fisik Biji Jagung untuk Bahan Pakan Menggunakan Jaringan Syaraf Tiruan Berdasarkan Data Citra Digital,” J. Peternak. Indones. (Indonesian J. Anim. Sci., vol. 13, no. 3, p. 183, 2011, doi: 10.25077/jpi.13.3.183-190.2011.
M. Zahara et al., “Klasifikasi Kualitas Varietas Benih Jagung Bima 20 Menggunakan Metode Random Forest,” vol. 10, no. 2, pp. 367–385, 2024.
N. Neneng, K. Adi, and R. Isnanto, “Support Vector Machine Untuk Klasifikasi Citra Jenis Daging Berdasarkan Tekstur Menggunakan Ekstraksi Ciri Gray Level Co-Occurrence Matrices (GLCM),” J. Sist. Inf. Bisnis, vol. 6, no. 1, p. 1, 2016, doi: 10.21456/vol6iss1pp1-10.
A. Hasanah and N. Nafi, “Klasifikasi Jenis Umbi Berdasarkan Citra Menggunakan SVM dan KNN,” J. Spirit, vol. 12, no. 1, pp. 48–51, 2020.
M. Lutfi, “Implementasi Metode K-Nearest Neighbor dan Bagging Untuk Klasifikasi Mutu Produksi Jagung,” Agromix, vol. 10, no. 2, pp. 130–137, 2019, doi: 10.35891/agx.v10i2.1636.
S. Tena, R. Hartanto, and I. Ardiyanto, “Content-Based Image Retrieval for Traditional Indonesian Woven Fabric Images Using a Modified Convolutional Neural Network Method,” J. Imaging, vol. 9, no. 8, 2023, doi: 10.3390/jimaging9080165.
A. Y. Tampani and P. Katemba, “Perbandingan Ekstraksi Tekstur Citra dengan Metode Statistik Orde I dan Statistik Orde Ii Untuk Pemilihan Benih Jagung,” Pros. SEMMAU 2016, pp. 1–23, 2016.
A. Sapitri, J. Raharjo, and S. Rizal, “Identifikasi Penyakit Jagung Dengan Menerapkan Metode Gray Level Co-Occurrence Matrix (GLCM) Dan Support Vector Machine (SVM) Melalui Citra Daun Identification Of Corn Diseases By Applying Gray Level Co-Occurrence Matrix (GLCM) And Support Vector Machine ,” e-Proceeding Eng., vol. 8, no. 6, pp. 2963–2971, 2022.
J. Kusuma, Rubianto, R. Rosnelly, Hartono, and B. H. Hayadi, “Klasifikasi Penyakit Daun Pada Tanaman Jagung Menggunakan Algoritma Support Vector Machine, K-Nearest Neighbors dan Multilayer Perceptron,” J. Appl. Comput. Sci. Technol., vol. 4, no. 1, pp. 1–6, 2023, doi: 10.52158/jacost.v4i1.484.
E. R. Septiana, F. A. Fiolana, and D. Erwanto, “Klasifikasi Kualitas Citra Kedelai Hitam (Malika) Menggunakan Metode K-Nearest Neighbor,” JEECOM J. Electr. Eng. Comput., vol. 4, no. 2, pp. 79–86, 2022, doi: 10.33650/jeecom.v4i2.4469.
R. S. Ilhamy and U. P. Sanjaya, “Algoritma K-Nearest Neighbors (KNN) untuk Klasifikasi Citra Buah Pisang dengan Ekstraksi Ciri Gray Level Co-Occurrence,” J. Telemat., vol. 17, no. 2, pp. 88–93, 2023, doi: 10.61769/telematika.v17i2.525.
S. Tena and B. Y. Dwiandiyanta, “Transforming Woven Ikat Fabric : Advanced Classification Via Transfer Learning and Convolutional Neural Networks,” vol. XII, no. 2, pp. 73–82, 2023, doi: 10.35508/jme.v12i2.12579.
A. S. Somantri, Miskiyah, and W. Broto, “Identi-fikasi Mutu Fisik Jagung Dengan Menggunakan Pengolahan Citra Digital Dan Jaringan Syaraf Tiruan,” J. Stand., vol. 10, pp. 102–112, 2008.
R. Rahmadewi, E. Purwanti, and V. Efelina, “Identifikasi Jenis Tumbuhan Menggunakan Citra Daun Berbasis Jaringan Saraf Tiruan (Artificial Neural Networks),” J. Media Elektro, vol. VII, no. 2, pp. 38–43, 2018, doi: 10.35508/jme.v0i0.427.
M. Maulidiansyah and I. Abdillah, “Klasifikasi Jenis Jagung Berdasarkan Bentuk Biji Menggunakan Metode You Only Look Once (YOLO),” JEECOM J. Electr. Eng. Comput., vol. 5, no. 2, pp. 215–226, 2023, doi: 10.33650/jeecom.v5i2.6802.
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.
This work is licensed under CC BY-SA 4.0