ANALISIS RUGI DAYA DI PENYULANG OEBUFU PT. PLN (PERSERO) ULP KUPANG MENGGUNAKAN ALGORITMA GENETIKA

  • Agusthinus S. Sampeallo(1*)
    Universitas Nusa Cendana
  • Wellem F. Galla(2)
    Universitas Nusa Cendana
  • Dhanang H. L. Rohi(3)
    Universitas Nusa Cendana
  • (*) Corresponding Author
Keywords: Power Losses, Capacitor, Genetic Algorithm, Backward-Forward Sweep Method, MATLAB

Abstract

 The distribution system has a very important role in distributing electrical energy to costumers. Power quality in distribution system can affect the flow of electric distribution. Increase of electrical power demand can affect to power distributing quality like power losses, voltage drop and lower power factor. Load increasing make a reactive current can be up when flow in high resistance conductor as an effect. Installation of capacitor in distribution system is a one of the most efficient method to power losses pressure. This study discusses the optimization of capacitors location and capacity. Genetic algorithm is using as an optimization method. Backward-Forward Sweep Method to be the method of power flow analysis before and after instalation of capacitors to see their effect. Result of genetic algorithm will compare with manual calculation of choosing capacitors to  know how effectively of genetic algorithm. This scheme is tested in Feeder Oebufu on 20 kV distribution system under PT. PLN (Persero) ULP Kupang operation. The test divided into 4 case included: before installation, placement of 1 capacitor, 2 capacitors, and 3 capacitors. Best result got in 3 capacitors simulation. Before installastion of capacitor, the power losses is 771,9928 kW, voltage minimum is 0,9842 pu, and power factor is 0,91257. Placement of 3 capacitors on bus 131 127, and 64 decrease a total power losses to be 31,164 kW, in other hand increase voltage profile around bus locations and power factor to be 0,99257.

Downloads

Download data is not yet available.

Author Biographies

Wellem F. Galla, Universitas Nusa Cendana

Program Studi Teknik Elektro, Fakultas Sains dan Teknik, Universitas Nusa Cendana

Dhanang H. L. Rohi, Universitas Nusa Cendana

Program Studi Teknik Elektro, Fakultas Sains dan Teknik, Universitas Nusa Cendana

References

Antasena. 2017. Analisis Susut Daya dan Alternatif Perbaikan pada Penyulang Ceko di PLN Rayon Pangkalpinang. Seminar Nasional Penelitian dan Pengabdian Masyarakat.Universitas Bangka Belitung. Hal.81-84.

Basyarach, N. A. Optimasi Lokasi dan Kapasitas Kapasitor pada Kondisi Beban Berubah Terhadap Waktu Untuk Minimasi Rugi Energi Menggunakan Algoritma Accelerated Particle Swarm Optimization. 2017. Tesis Magister. Institut Teknologi Sepuluh Nopember Surabaya, Indonesia.

S. W. Habsoro, A. Nugroho, B. Winardi. 2013. Analisa Penempatan Kapasitor Bank Untuk Perhitungan Drop Voltage pada Feeder Batang 02 Tahun 2012-2016 Dengan Software ETAP. Transient Vol. 2 No. 1. Universitas Diponegoro. Hal. 16-22.

Putra I. M. Penerapan Algoritma Genetika dan Implementasi Dalam MATLAB. 2018. Program Studi Teknologi Informasi Universitas Udayana, Bali.

Robandi, I. Desain Sistem Tenaga Modern, Optimisasi, Logika Fuzzy, Algoritma Genetika. 2006. CV. Andi Offset, Yogyakarta.

Teng, J. H. 2003. A Direct Approach for Distribution System Load Flow Solutions. IEEE Transactions on Power Delivery Vol. 18. Hal. 882-887.

Wijanarko E. 2011. Optimasi Penempatan Kapasitor Shunt Untuk Perbaikan Daya Reaktif pada Penyulang Distribusi Primer Radial Menggunakan Algoritma Genetika. Jurnal Universitas Diponegoro, Universitas Diponegoro.

S. Yunus, H. D. Laksono, P. Nidia, 2016. Memperbaiki Tegangan dan Rugi-rugi Daya pada Sistem Transmisi Dengan Optimasi Penempatan Kapasitor Menggunakan Algoritma Genetika. Jurnal Nasional Teknik Elektro Vol. 5 No. 2, Universitas Andalas. Hal. 290-296.

PlumX Metrics

Published
2021-04-30
How to Cite
[1]
A. Sampeallo, W. Galla, and D. Rohi, “ANALISIS RUGI DAYA DI PENYULANG OEBUFU PT. PLN (PERSERO) ULP KUPANG MENGGUNAKAN ALGORITMA GENETIKA”, JME, vol. 10, no. 1, pp. 32 - 43, Apr. 2021.
Section
Articles