PROTOTYPE SISTEM KLASIFIKASI KELAS PASIEN PENYAKIT PERNAPASAN BERBASIS RASPBERRY PI DENGAN METODE DECISION TREE

Keywords: Respiratory Disease, Early Diagnosis, Machine Learning, Decision Tree

Abstract

Everyone must have experienced something called illness. A disease in the human body can be caused by external factors such as pathogens or internal dysfunction. In a broader sense, a disease also includes injuries, disorders, disabilities, infections and syndromes. Among the various infections that exist in the human body, acute respiratory infections (ARI) are the most common diseases that affect all individuals regardless of age or gender, especially this virus that attacks the respiratory tract or respiratory diseases that virus spreads very quickly. . With this, the world health agency or known as the WHO (World Health Organization) has set several standards that can help deal with problems in the world. Therefore, we need equipment that helps check patients regularly and performs an early diagnosis so that when entering the patient's room, medical personnel have prepared themselves with some equipment that is by the patient's classification. This study will focus on the classification process in real-time on sensors installed in patients using machine learning decision trees as the classification method. Then, the classification results can be shown directly that the respiratory disease patients fall into a predetermined class.  

Downloads

Download data is not yet available.

Author Biography

Widjonarko Widjonarko, Universitas Jember

Depatemen Teknik Elektro, Fakultas Teknik

References

M. D. Ariyawan, "Aplikasi Sistem Pakar Diagnosa Penyakit Umum Pada Manusia Berbasis Web," J Elektron. Ilmu Komput. Udayana, vol. 7, no. 2, pp. 59- 67, 2018.

S. Muhami, "Klasifikasi Prediksi Penyakit Infeksi Saluran Pernapasan Akut (ISPA) Menggunakan Algoritma Decision Tree (ID3)," 2018.

M. Khan and S. T. Khan, "Epide-miology and Progress So Far," Molecules, vol. 26 (1), pp. 1- 25, 2021.

WHO, "Severe Acute RespiratoryInfections Treatment Centre," World Heal. Organ. Puhl., no. March, p. 120, 2020, [Online]. Available: https://apps.who.int/iris/bitstre-am/ handle/10 665/331603/WHO-2019-nCoV-SARI treat-ment center-2020.1-eng.pdf?sequenc =l&is Allowed=y.

O. Taiwo and A. E. Ezugwu, "Smart health care support for remote patient monitoring during covid-19 quarantine," Informatics Med.Unlocked, vol. 20, p. 100428, 2020, doi: 10.1016/j.imu.2020.100428.

U. Khaira, N. Syarief, and I. Hayati, "Prediksi Tingkat Fertilitas Pria Dengan Algoritma Pohon Keputusan Cart," Progr. Stud. Sist. In formasi, Fak. Sains dan Tek-nol. Univ. Jam-bi, vol. 5, no. 1, pp. 35- 42, 2020.

I. Fibriani, Widjonarko , A. Prasetyo, A. M. Raharjo, and D. E. Irawan, "Multi Deep Leaming to Diagnose COVID-19 in Lung X-Ray Images with Majority Vote Tech-nique," Int. J Intell. Eng. Syst., vol. 13, no. 6, pp. 560-568, 2020, doi: 10.22266/ijies20 20. 1231. 49.

D. P. Sukma, S. Defit, and G. W. Nurcahyo, "Jurnal Sistim Informasi dan Teknologi Iden-tifikasi Tingkat Kerusakan Peralatan Labor Teknik Komputer Jaringan Meng-gunakan Metode Decision Tree," vol. 3, pp. 275- 280, 2021, doi: 10.37034/jsisfotek.v3i 4.78.

Kumar, "An IoT Based Patient Monitoring System Using Raspberry Pl," 2016.

D. Sartika and Yupianti, "Klasifikasi Penya- kit Tiroid Menggunakan Algoritma C4. 5," J Sci. Technol., vol. 13, no. 1, pp. 71- 76, 2020.

M. E. Gumilang and W. Sugeng, "Implemen tasi alat pendeteksi detak jantung berbasis raspberry p i," vol. 2, no. 1, pp. 28- 29, 2016.

R. Latifah, E. S. Wulandari, and P. E. Kresh na, "Model Decision Tree Untuk Prediksi Jadwal Kerja Menggunakan Scikit­Learn," J Univ. Muhammadiyah Jakarta, pp. 1- 6, 2019, [Online]. Available:https: //jurnal.umj. ac.id/index.php/semnastek/article/download/5239/3517.

PlumX Metrics

Published
2022-04-29
How to Cite
[1]
W. Widjonarko, “PROTOTYPE SISTEM KLASIFIKASI KELAS PASIEN PENYAKIT PERNAPASAN BERBASIS RASPBERRY PI DENGAN METODE DECISION TREE”, JME, vol. 11, no. 1, pp. 58 - 69, Apr. 2022.
Section
Articles