DE BROGLIE WAVES IN ELECTRON MICROSCOPY: CONTRIBUTIONS TO ATOMIC-SCALE VISUALIZATION AND MATERIAL CHARACTERIZATION–A PRISMA BASED REVIEW
Abstract
Gelombang de Broglie menyatakan bahwa partikel bermassa memiliki sifat gelombang, dan menjadi dasar pengembangan mikroskop elektron modern. Penelitian ini bertujuan mengkaji kontribusi prinsip tersebut terhadap peningkatan resolusi pencitraan pada berbagai jenis mikroskop elektron, seperti TEM, SEM, dan STEM. Metode yang digunakan berupa tinjauan literatur sistematis dengan pendekatan PRISMA terhadap 25 artikel ilmiah terbitan 2015–2025 yang telah melalui peer review. Hasil kajian menunjukkan bahwa panjang gelombang elektron yang sangat kecil memungkinkan pengamatan struktur material hingga skala atom, melebihi batas difraksi mikroskop optik. Selain itu, teknologi seperti koreksi aberasi, pencitraan in-situ, dan 4D-STEM memperluas kemampuan mikroskop dalam menganalisis struktur dan dinamika material secara lebih akurat. Simpulan dari studi ini menegaskan bahwa prinsip gelombang de Broglie memainkan peran kunci dalam kemajuan teknologi pencitraan beresolusi tinggi
Downloads
References
2 Zhang YC, Zhou XF, Zhou X, Guo GC, Zhou ZW. 2017. Cavity-assisted single-mode and two-mode spin-squeezed states via phase-locked atom-photon coupling. Physical Review Letters, 118(8): 083604. https://doi.org/10.1103/PhysRevLett.118.083604
3 Zhao Y, Llorente AMP, Gómez MCS. 2021. Digital competence in higher education research: A systematic literature review. Computers & education, 168: 104212. https://doi.org/10.1016/j.compedu.2021.104212
4 Roy Y, Banville H, Albuquerque I, Gramfort A, Falk TH, Faubert J. 2019. Deep learning-based electroencephalography analysis: a systematic review. Journal of neural engineering, 16(5): 051001. https://doi.org/10.1088/1741-2552/ab260c
5 Snyder H. 2019. Literature review as a research methodology: An overview and guidelines. Journal of business research, 10: 333-339. https://doi.org/10.1016/j.jbusres.2019.07.039
6 Turner M, Prasojo E, Sumarwono R. 2022. The challenge of reforming big bureaucracy in Indonesia. Policy Studies, 43(2): 333-351. https://doi.org/10.1080/01442872.2019.1708301
7 Taherdoost H. 2016. Validity and Reliability of the Research Instrument; How to Test the Validation of a Questionnaire/Survey in a Research. International Journal of Academic Research in Management (IJARM), 5. http://dx.doi.org/10.2139/ssrn.3205040
8 Schmidt L, Mutlu ANF, Elmore R, Olorisade B K, Thomas J, Higgins JP. 2023. Data extraction methods for systematic review (semi) automation: Update of a living systematic review. F1000Research, 10: 401. https://doi.org/10.12688/f1000research.51117.3
9 Page MJ, Moher D, Bossuyt PM, Boutron I, Hoffmann TC, Mulrow CD. 2021. PRISMA 2020 Explanation and Elaboration: Updated Guidance and Exemplars for Reporting Systematic Reviews. bmj, 372. https://doi.org/10.1136/bmj.n160
10 Yasin YM, Kerr MS, Wong CA, Bélanger CH. 2020. Factors affecting nurses' job satisfaction in rural and urban acute care settings: A PRISMA systematic review. Journal of Advanced Nursing, 76(4): 963-979. https://doi.org/10.1111/jan.14293
11 Egerton RF. 2016. Physical principles of electron microscopy: An introduction to TEM, SEM, and AEM, second edition. New York: Springer.
12 Williams D, Carter C. 2009. The Transmission Electron Microscope. Springer.
13 Honda K, Takaki T, Kang D. 2022. Recent Advances in Electron Microscopy for the Diagnosis and Research of Kidney Disease. Clinical and Experimental Nephrology, 26(4): 345–354. https://doi.org/10.23876/j.krcp.21.270
14 Castellanos-Reyes JÁ, Zeiger PM, Rusz J. 2025. Dynamical theory of angle-resolved electron energy loss and gain spectroscopies of phonons and magnons in transmission electron microscopy including multiple scattering effects. Physical Review Letters, 134(3): 036402. https://doi.org/10.1103/PhysRevLett.134.036402
15 Tanaka N. 2024. Imaging Theory of High-Resolution TEM and Image Simulation. In Electron Nano-imaging: Basics of Imaging and Diffraction for TEM and STEM. Tokyo: Springer Japan.
16 Panova O, Ophus C, Takacs CJ, Balsara NP, Minor AM. 2019. Diffraction Imaging of Nanocrystalline Structures in Organic Semiconductor Molecular Thin Films. Nature Materials, 18(8): 860–865. https://doi.org/10.1038/s41563-019-0387-3
17 Ziatdinov M, Dyck O, Maksov A, Li X, Sang X, Xiao K, Kalinin SV. 2017. Deep Learning of Atomically Resolved Scanning Transmission Electron Microscopy Images: Chemical Identification and Tracking Local Transformations. ACS nano, 11(12): 12742-12752. https://doi.org/10.1021/acsnano.7b07504
18 Agrawal M, Prasad VVSH, Nijhawan G, Jalal SS, Rajalakshmi B, Dwivedi SP. 2024. A Comprehensive Review of Electron Microscopy in Materials Science: Technological Advances and Applications. In E3S Web of Conferences, 505: 01029. https://doi.org/10.1051/e3sconf/202450501029
19 Xiao WY, Huang CP. 2021. Metasurfaces for de Broglie Waves. Physical Review B, 104(24): 245429. https://doi.org/10.1103/PhysRevB.104.245429
20 Raj ILP, Valanarasu S, Hariprasad K, Ponraj JS, Chidhambaram N, Ganesh V. 2020. Enhancement of Optoelectronic Parameters of Nd-Doped ZnO Nanowires for Photodetector Applications. Optical Materials, 109: 110396. https://doi.org/10.1016/j.optmat.2020.110396
21 Singh L, Awasthi A. 2020. Role of Metal Oxidation at High Temperature. Advances in Materials and Processing Technologies, 6(2): 168-188. https://doi.org/10.1080/2374068X.2020.1731235
22 Atchudan R, Edison TNJI, Shanmugam, M, Perumal S, Somanathan T, Lee YR. 2021. Sustainable Synthesis of Carbon Quantum Dots from Banana Peel Waste Using Hydrothermal Process for in Vivo Bioimaging. Physica E: Low-dimensional Systems and Nanostructures, 126: 114417. https://doi.org/10.1016/j.physe.2020.114417
23 Chandrappa V, Basavapoornima C, Kesavulu CR, Babu AM, Depuru SR, Jayasankar CK. 2022. Spectral Studies of Dy3+: Zincphosphate Glasses for White Light Source Emission Applications: A Comparative Study. Journal of Non-Crystalline Solids, 583: 121466. https://doi.org/10.1016/j.jnoncrysol.2022.121466
24 Kumar PSS, Allamraju KV. 2019. A Review of Natural Fiber Composites [Jute, Sisal, Kenaf]. Materials Today: Proceedings, 18: 2556-2562. https://doi.org/10.1016/j.matpr.2019.07.113
25 Awasthi A, Saxena KK, Arun V. 2021. Sustainable and Smart Metal Forming Manufacturing Process. Materials Today: Proceedings, 44: 2069-2079. https://doi.org/10.1016/j.matpr.2020.12.177
26 Gong T, Chen L, Wang X, Qiu Y, Liu H, Yang Z, Walther T. 2025. Recent Developments in Transmission Electron Microscopy for Materials Science. Crystals, 15(2): 192. https://doi.org/10.3390/cryst15020192
27 Wu M, Harreiss C, Ophus C, Spiecker E. 2022. Seeing Structural Evolution of Organic Molecular Nano-Crystallites Using 4D Scanning Confocal Electron Diffraction. Nature Communications, 13: 1234. https://doi.org/10.1038/s41467-022-30413-5
28 Ural N. 2021. The significance of scanning electron microscopy (SEM) analysis on the microstructure of improved clay: An overview. Open Geosciences, 13(1): 197-218. https://doi.org/10.1515/geo-2020-0145
29 Latychevskaia T, Longchamp JN, Escher C, Fink HW. 2015. Holography and Coherent Diffraction with Low-Energy Electrons: A Route Towards Structural Biology at The Single Molecule Level. Ultramicroscopy, 159: 395-402. https://doi.org/10.1016/j.ultramic.2014.11.024
30 Streshkova NL, Koutenský P, Kozák M. 2024. Electron Vortex Beams for Chirality Probing at The Nanoscale. Physical Review Applied, 22(5): 054017. https://doi.org/10.1103/PhysRevApplied.22.054017
31 Ercius P, Johnson I, Brown H, Pelz P, Hsu SL, Draney B. 2020. The 4D Camera–An 87 Khz Frame-Rate Detector for Counted 4D-STEM Experiments. Microscopy and Microanalysis, 26(S2): 1896-1897. https://doi.org/10.1017/S1431927620019753
32 Ophus C. 2019. Four-Dimensional Scanning Transmission Electron Microscopy (4D-STEM): From Scanning Nanodiffraction to Ptychography and Beyond. Microscopy and Microanalysis, 25(3): 563-582. https://doi.org/10.1017/S1431927619000497
33 Chen Z, Jiang Y, Shao YT, Holtz ME, Odstrčil M, Guizar-Sicairos M. 2021. Electron ptychography achieves atomic-resolution limits set by lattice vibrations. Science, 372(6544): 826-831. https://doi.org/10.1126/science.abg2533
34 Fang S, Wen Y, Allen CS, Ophus C, Han GG, Kirkland AI. et al. 2019. Atomic electrostatic maps of 1D channels in 2D semiconductors using 4D scanning transmission electron microscopy. Nature communications, 10(1): 1127. https://doi.org/10.1038/s41467-019-08904-9
Copyright (c) 2025 Jurnal Fisika : Fisika Sains dan Aplikasinya

This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.
Jl. Adisucipto, Penfui-Kupang, Lasiana, Klp. Lima, Kota Kupang, Nusa Tenggara Timur., Indonesia
This work is licensed under Attribution-NonCommercial-ShareAlike 4.0 International (CC BY-NC-SA 4.0)
Hamdi Akhsan(1*)












