PENINGKATAN KESTABILAN SISTEM ENERGI BEBASIS PLTB MELALUI CRITICAL CLEARING TIME YANG TERHUBUNG SMART GRID
Abstract
Wind Power Plants (PLTB) are a vital renewable energy source in the global transition towards clean energy. PLTB holds great potential for reducing reliance on fossil fuels and enhancing the stability of power systems. However, unpredictable wind power fluctuations can challenge system stability. To address this, smart systems like the Smart grid are needed. The Smart grid is an evolution of traditional power systems equipped with dynamic optimization techniques to improve real-time efficiency, reliability, and sustainability. Additionally, transient stability analysis is crucial for maintaining system stability during disturbances. One method used is the Critical Clearing Time (CCT) calculation, which determines the critical disconnection time from the onset of the disturbance until synchronization is lost. This study uses transient analysis simulations on the Sungguminasa – Maros power system, utilizing the Power System Analysis Toolbox (PSAT) under MATLAB. By integrating PLTB with the Smart Grid, it is expected that better coordination between power system components can be achieved, enhancing not only the system’s reliability and stability but also optimizing overall energy efficiency.
Downloads
References
T. Sakurai, H. Funato, and S. Ogasawara, “Fundamental Characteristics of Test Facility for Micro Hydroelectric Power Generation System.”
M. Reza, “A Survey on the Transient Stability of Power Systems with Converter Connected Distributed Generation,” Jurnal Teknik Elektro, vol. 7, no. 1, pp. 8–12, 2007, doi: 10.9744/jte.7.1.8-12.
F. Safari and I. Dincer, “Assessment and optimization of an integrated wind power system for hydrogen and methane production,” Energy Convers Manag, vol. 177, no. September, pp. 693–703, 2018, doi: 10.1016/j.enconman.2018.09.071.
R. K. Tagayi, S. Han, H. Lee, and J. Kim, “Reliable Frequency Control Support Scheme Based on Wind Power Generator Combined with Rechargeable Energy Storage System Applying Adaptive Power Reference,” Applied Sciences (Switzerland), vol. 13, no. 9, 2023, doi: 10.3390/app13095302.
M. Tuegeh, A. Soeprijanto, and M. P. Hery, “Optimal Generator Scheduling Based On Partcle Swarm optimization,” SemnasIF 2009, vol. 2009, no. semnasIF, pp. A25–A32, 2009.
Z. Wu, X. Zhao, and D. Fan, “Research on the Influence of Traction Load on Transient Stability of Power Grid Based on Parameter Identification,” Energies (Basel), vol. 16, no. 22, 2023, doi: 10.3390/en16227553.
Z. Huang, L. Bao, and W. Xu, “A method to measure QV curves and its applications in power systems,” International Journal of Electrical Power and Energy Systems, vol. 29, no. 2, pp. 147–154, 2007, doi: 10.1016/j.ijepes.2006.06.003.
I. C. Gunadin, Z. Muslimin, and A. Siswanto, “Transient stability improvement using allocation power generation methods based on moment inertia,” Proceedings - 2017 International Conference on Electrical Engineering and Informatics: Advancing Knowledge, Research, and Technology for Humanity, ICELTICs 2017, vol. 2018-Janua, no. ICELTICs, pp. 147–152, 2017, doi: 10.1109/ICELTICS.2017.8253281.
D. Sreenivasulu Reddy and C. H. Siva Kumari, “Transient stability analysis of a combined cycle power plant using etap software,” Proceedings - 7th IEEE International Advanced Computing Conference, IACC 2017, pp. 510–515, 2017, doi: 10.1109/IACC.2017.0111.
I. B. Sulistiawati, M. Abdillah, and A. Soeprijanto, “Neural network based transient stability model to analyze the security of Java-Bali 500 kV power system,” Proceedings of the 2011 International Conference on Electrical Engineering and Informatics, ICEEI 2011, no. April 2014, 2011, doi: 10.1109/ICEEI.2011.6021694.
Y. Al Mashhadany, A. K. Abbas, and S. Algburi, “Study and Analysis of Power System Stability Based on FACT Controller System,” Indonesian Journal of Electrical Engineering and Informatics, vol. 10, no. 2, pp. 317–332, 2022, doi: 10.52549/ijeei.v10i2.3630.
I. C. Gunadin, A. Soeprijanto, and O. Penangsang, “Steady state stability assessment using extreme learning machine based on modal analysis,” International Review of Electrical Engineering, vol. 7, no. 3, pp. 4532–4537, 2012.
A. H. Raditya, M. Pujiantara, and I. Robandi, “Penentuan Critical Clearing Time Untuk Analisis Kestabilan Transien Sistem Kelistrikan Kalimantan 275kV,” SinarFe7, pp. 256–261, 2018, [Online]. Available: https://journal.fortei7.org/index.php/sinarFe7/article/view/183
S. B. A. Kashem, M. E. H. Chowdhury, A. Khandakar, J. Ahmed, A. Ashraf, and N. Shabrin, “Wind power integration with smart grid and storage system: Prospects and limitations,” International Journal of Advanced Computer Science and Applications, vol. 11, no. 5, pp. 552–569, 2020, doi: 10.14569/IJACSA.2020.0110570.
E. Syahputra, Z. Pelawi, and A. Hasibuan, “Analisis Stabilitas Sistem Tenaga Listrik Menggunakan Berbasis Matlab,” Sisfo: Jurnal Ilmiah Sistem Informasi, vol. 2, no. 2, pp. 29–48, 2018, doi: 10.29103/sisfo.v2i2.1010.
A. Nuncio et al., “Analisis Kestabilan Tegangan Akibat Integrasi Pembangkit PLTB 1 MW Pada Sistem Kelistrikan Jaringan Distribusi 20 Kv,” vol. 8, pp. 425–432, 2024.
Fitriani, I. C. Gunadin, A. Suyuti, and A. Siswanto, “Dynamic stability improvement with integrated power plant scheduling method based on moment of inertia,” IOP Conf Ser Earth Environ Sci, vol. 926, no. 1, 2021, doi: 10.1088/1755-1315/926/1/012030.
J. A. Pongtiku, M. Tuegeh, and Ir. H. Tumaliang, “Analisa Stabilitas Transien Untuk Menentukan Waktu Pemutusan Kritis (Critical Clearing Time) Pada Jaringan Transmisi 70 Kv Plta Tanggari Ii-Gi Sawangan Dengan Menggunakan Program Matlab,” Jurnal Teknik Elektro dan Komputer, vol. 3, no. 2, pp. 53–58, 2014.
S. I. Cahya, D. W. I., & Haryudo, “Analisis Kestabilan Transient Dan Pelepasan Beban Saat Terjadi Gangguan Pada Pembangkit Di Ptpn X (Persero) Pg. Ngadiredjo Kediri,” Jurnal Teknik Elektro, vol. 7, no. 2, pp. 113–120, 2018.
R. P. Eviningsih, A. Priyadi, and Soedibjo, “Perhitungan CCT (Critical Clearing Time) Berbasis Trajectory Kritis Menggunakan Persamaan Simultan pada Sistem yang Terhubung dengan Smart Grid,” Jurnal Teknik ITS, vol. 4, no. 2, 2015, [Online]. Available: http://www.ejurnal.its.ac.id/index.php/teknik/article/view/9506
N. L. Bijang, “Analisa Waktu Pemutusan Kritis Suatu Sistem Kelistrikan,” Jurnal Ilmiah Sains, vol. 12, no. 2, p. 153, 2013, doi: 10.35799/jis.12.2.2012.741.
L. F. Viera Valencia and D. Garcia Giraldo, Smart Grid. Fundamental Of Design And Analysis, vol. 2. 2019.
Thomas and Mcdonald (2015), Power_system_SCADA.
M. J. B. Kabeyi and O. A. Olanrewaju, “Smart grid technologies and application in the sustainable energy transition: a review,” International Journal of Sustainable Energy, vol. 42, no. 1, pp. 685–758, 2023, doi: 10.1080/14786451.2023.2222298.
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.
This work is licensed under CC BY-SA 4.0