Kesenjangan Kemampuan Literasi Matematis Siswa Ditinjau dari Status Sosioekonomi

  • Daniel Williams Fointuna(1*)
    Universitas Nusa Cendana
  • (*) Corresponding Author
Keywords: Gaps in Learning Achievement, Equitable Learning Opportunities, Mathematics Learning Achievement

Abstract

Status sosioekonomi terus menjadi ancaman terhadap pemerataan pendidikan di suatu negara. Namun, hanya sedikit penelitian yang mencoba menguji hubungan antara status sosioekonomi dan literasi matematis. Penelitian ini bertujuan untuk menganalisis hubungan antara status sosioekonomi dan literasi matematis siswa SMP Negeri di Kupang secara umum serta pada domain proses dan konten, dimana belum ada penelitian sebelumnya yang melakukan hal tersebut. Peneliti menggunakan data sekunder yang diperoleh dari survei berbasis sekolah yang melibatkan 377 peserta, yang dipilih dengan teknik pengambilan sampel acak berkelompok dua tahap. Data tersebut dikumpulkan pada tahun ajaran 2018/2019. Meskipun data memenuhi normalitas dan melanggar asumsi homogenitas varians, peneliti menggunakan uji ANAVA Welch untuk menguji hubungan antara kinerja siswa dan status sosioekonomi di tingkat kecamatan. Hasilnya menunjukkan hubungan sedang hingga sangat kuat antara status sosioekonomi dan literasi matematis siswa secara umum serta dalam tiga domain proses dan empat domain konten. Temuan ini menunjukkan bahwa pemerataan sumber belajar di seluruh wilayah sekolah kurang mampu dapat menjadi fokus utama perbaikan untuk membantu mengurangi kesenjangan prestasi dan memastikan kesempatan belajar yang adil bagi semua siswa tanpa memandang status sosioekonomi.

Downloads

Download data is not yet available.

References

Badan Kependudukan dan Keluarga Berencana Nasional (BKKBN) [the National Population and Family Planning Board (NPFPB)]. (2025). Batasan dan Pengertian Mutasi Data Keluarga (MDK) [the Framework and Definition of Family Data Mutation (FDM)]. Retrieved from http://aplikasi.bkkbn.go.id/mdk/BatasanMDK.aspx on 5 June 2025.

Cohen, J. (1973). Eta-squared and partial eta-squared in fixed factor ANOVA designs. Educational and Psychological Measurement, 33, 107–112. https://doi.org/10.1177/001316447303300111

Cohen, J. (1992). A power primer. Psychological Bulletin, 112 (1), 155-159. https://doi.org/10.1037/0033-2909.112.1.155

Coleman, J. S., Campbell, E. Q., Hobson, C. J., McPartland, J., Mood, A. M., Weinfeld, F. D., & York, R. L. (1966). Equality of educational opportunity. Washington, D.C.: U.S. Government Printing Office.

Delacre, M., Leys, C., Mora, Y. L. & Lakens, D. (2019). Taking parametric assumptions seriously: Arguments for the use of Welch’s F-test instead of the classical F-test in one-way anova. International Review of Social Psychology, 32(1), 1-12. https://doi.org/10.5334/irsp.198

Ersan, O. & Rodriguez, M. C. (2020). Socioeconomic status and beyond: a multilevel analysis of TIMSS mathematics achievement given student and school context in Turkey. Large-scale Assessments in Education, 8(15), 1-32. https://doi.org/10.1186/s40536-020-00093-y

Field, A. (2000). Discovering Statistics using SPSS for Windows. London: SAGE Publications Ltd.

Fointuna, D. W. (2025). Kesamaan gender pada literasi matematis siswa: Implikasi bagi kesetaraan gender di bidang STEM. Fraktal: Jurnal Matematika dan Pendidikan Matematika, 6(1), 32-46. https://doi.org/10.35508/fractal.v6i1.21158

Fointuna, D. W. & Riegle-Crumb, C. (2025). Towards gender equality in STEM fields: Gender similarities in students’ mathematical literacy. International Journal of Pedagogy and Teacher Education, 9(1), 86-97. https://doi.org/10.20961/ijpte.v9i1.99015

Fointuna, D. W. (2021). Applying Mamdani’s method to categorize mathematical literacy of public middle school students in Kupang. J. Phys.: Conf. Ser. 1957 012009. http://dx.doi.org/10.1088/1742-6596/1957/1/012009

Fointuna, D. W., Kaluge, A. H. and Fernandez, A. J. (2020). An analysis of mathematical literacy of state junior high school students in Kupang. J. Phys.: Conf. Ser. 1422 012025. http://dx.doi.org/10.1088/1742-6596/1422/1/012025

Fointuna, D. W., Kaluge, A. H. and Fernandez, A. J. (2019). Kategorisasi kemampuan literasi matematika siswa SMP negeri se-kota Kupang berbantuan fuzzy inference system metode Mamdani. Asimtot: Jurnal Kependidikan Matematika, 1(1), 1-12. https://doi.org/10.30822/asimtot.v1i1.92

Harwell, M., Maeda, Y., Bishop, K., & Xie, A. (2017). The surprisingly modest relationship between SES and educational achievement. Journal of Experimental Education, 85(2), 197–214. https://doi.org/10.1080/00220973.2015.1123668

Jannah, R. D., Putri, R. I. I. and Zulkardi. (2018). PISA-like mathematics problem: The context of basketball in Asian Games. J. Phys. Conf. Ser. 1088 012019. http://dx.doi.org/10.1088/1742-6596/1088/1/012019

Kim, H. Y. (2013). Statistical notes for clinical researchers: assessing normal distribution (2) using skewness and kurtosis. ISSN 2234-7658 (print)/ ISSN 2234-7666 (online). http://dx.doi.org/10.5395/rde.2013.38.1.52

Krejcie, R. V. and Morgan, D. W. (1970). Determining sample size for research activities. Educational and Psychological Measurement, 30 (1), 607-610. https://doi.org/10.1177/001316447003000308

Kusaeri, K., Aditomo, A., Ridho, A. & Fuad, A. Z. (2018). Socioeconomic status, parental involving in learning and student’ mathematics achievement in Indonesian senior high school. Cakrawala Pendidikan, 38(3), 333-344. https://doi.org/10.21831/cp.v38i3.21100

Mas' ud, F., Izhatullaili, I., Doko, Y. D., & Jama, K. B. (2025). Pendidikan Bahasa Indonesia sebagai Sarana Penguatan Literasi Hukum di Era Digital. Haumeni Journal of Education, 5(2), 9-21.

MZ, M., Mailizar, & Elizar. (2025). Understanding Indonesian students’ mathematics performance: A secondary analysis of PISA data. Jurnal Didaktik Matematika, 12(1), 181-195. https://doi.org/10.24815/jdm.v12i1.44700

National Research Council. (2001). Adding it up: Helping children learn mathematics. In J. Kilpatrick, J. Swafford, & B. Findell (Eds.), Mathematics Learning Study Committee, Center for Education, Division of Behavior and Social Sciences and Education. Washington, DC: National Academy Press.

Nizar, H., Putri, R. I. I. and Zulkardi. (2018). PISA-like mathematics problem with karate context in Asian Games. J. Phys. Conf. Ser. 1088 012063. http://dx.doi.org/10.1088/1742-6596/1088/1/012063

Ocakoğlu, G. & Macunluoğlu, A. C. (2023). Comparison of the performances of parametric k-sample test procedures as an alternative to one-way analysis of variance. The European Research Journal, 9(1), 39-48. https://doi.org/10.18621/eurj.1030038

OECD. (2004). Learning for tomorrow’s world: First results from PISA 2003. Paris: OECD Publishing.

OECD. (2005a). PISA 2003 Technical Report. Paris: OECD Publishing.

OECD. (2005b). School factors related to quality and equity: Results from PISA 2000. Paris: OECD Publishing.

OECD. (2013a). PISA 2012 Assessment and Analytical Framework: Mathematics, Reading, Science, and Financial Literacy. Paris: OECD Publishing. http://dx.doi.org/10.1787/9789264190511-en

OECD. (2013b). Policy Implications of School Management and Practices, in What Makes Schools Successful? Resources, Policies and Practices (Volume IV). Paris: OECD Publishing. http://dx.doi.org/10.1787/9789264201156-en

OECD. (2014). PISA 2012 Results: What Students Know and Can Do – Student Performance in Mathematics, Reading and Science. Paris: OECD Publishing. http://dx.doi.org/10.1787/9789264208780-en

OECD. (2016a). PISA 2015 Assessment and Analytical Framework: Science, Reading, Mathematics, and Financial Literacy. Paris: OECD Publishing. http://dx.doi.org/10.1787/9789264281820-en

OECD. (2016b). PISA 2015 Results (Volume 1): Excellence and Equity in Education. Paris: OECD Publishing. http://dx.doi.org/10.1787/9789264266490-en

OECD. (2019). PISA 2018: Insights and Interpretations. Paris: OECD Publishing.

OECD. (2023). PISA 2022 Results (Volume I): The State of Learning and Equity in Education. Paris: OECD Publishing. https://doi.org/10.1787/53f23881-en

Perry, L. B., & McConney, A. (2010). Does the SES of the School Matter? An Examination of Socioeconomic Status and Student Achievement Using PISA 2003. Teachers College Record, 112(4), 1137–1162. https://doi.org/10.1177/016146811011200401

Rifai and Wutsqa, D. U. (2017). Kemampuan Literasi Matematika Siswa SMP Negeri Se-Kabupaten Bantul [Mathematical literacy of public middle school students in Bantul regecy]. Jurnal Pendidikan Matematika dan Sains, 4(2), 54-64. http://dx.doi.org/10.21831/jpms.v5i2.15747

Sirin, S. R. (2005). Socioeconomic status and academic achievement: A meta-analytic review of research. Review of Educational Research, 75(3), 417–453. https://doi.org/10.3102/00346543075003417

Stacey, K. (2011). The PISA view of mathematical literacy in Indonesia. IndoMS. J. M. E., 2(2), 95-126. https://dx.doi.org/10.22342/jme.2.2.746.95%20-%20126

Welkowitz, J., Cohen, B. H. and Ewen, R. B. (2006). Introductory Statistics for the Behavioural Sciences Sixth Edition. Hoboken: John Wiley & Sons, Inc.

White, K. R. (1982). The relation between socioeconomic status and academic achievement. Psychological Bulletin, 91(3), 461–481. https://psycnet.apa.org/doi/10.1037/0033-2909.91.3.461

Yansen, D., Putri, R. I. I. and Zulkardi. (2018). Mathematical problems of PISA-like with the 200m swimming context in Asian Games. J. Phys. Conf. Ser. 1088 012086. http://dx.doi.org/10.1088/1742-6596/1088/1/012086

PlumX Metrics

Published
2025-12-02