Strategies and Solutions in Overcoming the Challenges of Lipase Utilization in Biodiesel Production: A Review

  • Cindy Aulia(1*)
    Department of Chemistry, Faculty of Mathematics and Natural Sciences, Mulawarman University Jl. Barong Tongkok No. 4, Gn Kelua, Samarinda, East Kalimanta
  • Yuyun Krisdayanti Lase(2)
    Department of Chemistry, Faculty of Mathematics and Natural Sciences, Mulawarman University Jl. Barong Tongkok No. 4, Gn Kelua, Samarinda, East Kalimantan
  • Lutfillah Dini Annisa(3)
    Department of Chemistry, Faculty of Mathematics and Natural Sciences, Mulawarman University Jl. Barong Tongkok No. 4, Gn Kelua, Samarinda, East Kalimantan
  • Sauza Shafa Salsabila Putri(4)
    Department of Chemistry, Faculty of Mathematics and Natural Sciences, Mulawarman University Jl. Barong Tongkok No. 4, Gn Kelua, Samarinda, East Kalimantan
  • Dhista Dwi Saputri(5)
    Department of Chemistry, Faculty of Mathematics and Natural Sciences, Mulawarman University Jl. Barong Tongkok No. 4, Gn Kelua, Samarinda, East Kalimantan
  • Moh. Syaiful Arif(6)
    Department of Chemistry, Faculty of Mathematics and Natural Sciences, Mulawarman University Jl. Barong Tongkok No. 4, Gn Kelua, Samarinda, East Kalimantan
  • Eva Syaiful Marliana(7)
    Department of Chemistry, Faculty of Mathematics and Natural Sciences, Mulawarman University Jl. Barong Tongkok No. 4, Gn Kelua, Samarinda, East Kalimantan
  • (*) Corresponding Author
Keywords: Biodiesel, lipase, enzyme immobilization, non-alcohol routes, ultrasonic technology

Abstract

Biodiesel production using lipase as a catalyst offers a more environmentally friendly approach compared to chemical catalysts. However, the application of lipase in industry still faces various challenges, such as high production costs, low enzyme stability, and longer reaction times. To address these constraints, various strategies have been developed. This review not only summarizes these strategies but also highlights recent approaches that are less commonly discussed in the literature, such as the use of non-alcohol routes with methyl acetate and the application of ultrasonic technology to improve conversion efficiency. Additionally, this review provides a fresh perspective by systematically comparing the effectiveness of various lipase immobilization methods and low-cost lipase sources. The uniqueness of this study lies in the comprehensive integration of conventional biocatalysis strategies and emerging innovative approaches. It is hoped that this approach will offer more practical and relevant guidance for the development of enzyme-based biodiesel production technologies, making lipase-based biodiesel production more efficient, economical, and sustainable, while contributing to the reduction of dependency on fossil fuels and the advancement of renewable energy.

Downloads

Download data is not yet available.

References

Halim Tjiwidjaja and Rianti Salima, “Dampak Energi Fosil Terhadap Perubahan Iklim Dan Solusi Berbasis Energi Hijau,” Jurnal wilayah kota dan lingkungan berkelanjutan, vol. 2, no. 2, pp. 166–172, Dec. 2023, doi: 10.58169/jwikal.v2i2.625.

D. S. Logayah, R. P. Rahmawati, D. Z. Hindami, and B. R. Mustikasari, “Krisis Energi Uni Eropa: Tantangan dan Peluang dalam Menghadapi Pasokan Energi yang Terbatas,” Hasanuddin Journal of International Affairs, vol. 3, no. 2, pp. 102–110, 2023, doi: 10.31947/hjirs.v3i2.27052.

S. Oko, Mustafa, A. Kurniawan, and D. Willain, “Sintesis Biodiesel dari Minyak Kedelai Melalui Reaksi Transesterifikasi Dengan Katalis CaO/NaOH,” Jurnal Teknologi Volume, vol. 13, no. 1, pp. 1–6, 2021, [Online]. Available: https://dx.doi.org/10.24853/jurtek.13.1.1-6

P. Chandra, Enespa, R. Singh, and P. K. Arora, “Microbial lipases and their industrial applications: A comprehensive review,” Aug. 26, 2020, BioMed Central Ltd. doi: 10.1186/s12934-020-01428-8.

B. D. Ribeiro, A. M. De Castro, M. A. Z. Coelho, and D. M. G. Freire, “Production and use of lipases in bioenergy: A review from the feedstocks to biodiesel production,” Enzyme Res, vol. 2011, no. 1, 2011, doi: 10.4061/2011/615803.

P. S. Bisen, B. S. Sanodiya, G. S. Thakur, R. K. Baghel, and G. B. K. S. Prasad, “Biodiesel production with special emphasis on lipase-catalyzed transesterification,” Biotechnol Lett, vol. 32, no. 8, pp. 1019–1030, 2010, doi: 10.1007/s10529-010-0275-z.

S. K. Narwal and R. Gupta, “Biodiesel production by transesterification using immobilized lipase,” Biotechnol Lett, vol. 35, no. 4, pp. 479–490, 2013, doi: 10.1007/s10529-012-1116-z.

M. Cozier, “Business highlights: Collaboration: Bigger and beta,” Biofuels, Bioproducts and Biorefining, vol. 8, no. 6, p. 743, 2014, doi: 10.1002/BBB.

P. Choudhury and B. Bhunia, “Review Article Industrial Application of Lipase : a Review,” Biopharm Journal, vol. 1, no. 2, pp. 41–47, 2015, [Online]. Available: https://www.researchgate.net/publication/293133846_Industrial_application_of_lipase_a_review

A. A. Budiman and S. Samik, “Review Artikel : Produksi Biodiesel Dari Minyak Goreng Bekas Dengan Metode Transesterifikasi Menggunakan Katalis,” Unesa Journal of Chemistry, vol. 12, no. 2, pp. 36–48, 2023, doi: 10.26740/ujc.v12n2.p36-48.

V. Mandari and S. K. Devarai, “Biodiesel Production Using Homogeneous, Heterogeneous, and Enzyme Catalysts via Transesterification and Esterification Reactions: a Critical Review,” Bioenergy Res, vol. 15, no. 2, pp. 935–961, 2022, doi: 10.1007/s12155-021-10333-w.

I. G. P. P. M. Putra, N. Iskandar, and Sulardjaka, “Pengaruh Persentase Binder Bentonit Terhadap Densitas Pelet Katalis Zeolit Alam,” Jurnal Teknik Mesin, vol. 11, no. 1, pp. 44–47, 2023, [Online]. Available: https://ejournal3.undip.ac.id/index.php/jtm

M. H. Ikhsan and U. K. Nizar, “Katalis Asam Padat Berbasis Karbon Tersulfonasi Pada Proses Pembuatan Biodiesel,” Chemistry Journal of State University of Padang, vol. 9, no. 1, pp. 51–54, 2020, [Online]. Available: http://ejournal.unp.ac.id/index.php/kimia%0D

M. S. Bethan and E. Supriyo, “Transesterifikasi Minyak Kelapa Menjadi Biodiesel Dengan Katalis Cao Dan Penerapan Biodiesel (B40) Pada Alat Fogging,” Gema Teknologi, vol. 21, no. 2, pp. 81–85, 2021, doi: 10.14710/gt.v21i2.37297.

R. Sholeha and R. Agustini, “Lipase Biji-Bijian Dan Karakteristiknya,” Unesa Journal of Chemistry, vol. 10, no. 2, pp. 168–183, 2021, doi: 10.26740/ujc.v10n2.p168-183.

A. R. Ismail and K. H. Baek, “Lipase immobilization with support materials, preparation techniques, and applications: Present and future aspects,” Int J Biol Macromol, vol. 163, pp. 1624–1639, 2020, doi: 10.1016/j.ijbiomac.2020.09.021.

A. R. Ismail, H. Kashtoh, and K. H. Baek, “Temperature-resistant and solvent-tolerant lipases as industrial biocatalysts: Biotechnological approaches and applications,” Int J Biol Macromol, vol. 187, no. May, pp. 127–142, 2021, doi: 10.1016/j.ijbiomac.2021.07.101.

F. T. T. Cavalcante et al., “Opportunities for improving biodiesel production via lipase catalysis,” Fuel, vol. 288, no. October, 2021, doi: 10.1016/j.fuel.2020.119577.

N. Rachmadona, F. S. Nurrusyda, H. A. Sumeru, H. D. Kusuma, and D. A. S. L. A. Dewi, “Produksi Biodiesel dari Crude Palm Oil ( CPO ) dengan Menggunakan Lipase dan Etanol Konsentrasi Rendah,” Kimia Padjajaran, vol. 2, no. 1, pp. 1–7, 2023, [Online]. Available: https://jurnal.unpad.ac.id/jukimpad/article/view/53113

F. Fibriana, A. Upaichit, and B. Cheirsilp, “Turning waste into valuable products: Utilization of agroindustrial oily wastes as the low-cost media for microbial lipase production,” J Phys Conf Ser, vol. 1918, no. 5, 2021, doi: 10.1088/1742-6596/1918/5/052028.

G. Zhu, Q. Fang, F. Zhu, D. Huang, and C. Yang, “Structure and Function of Pancreatic Lipase-Related Protein 2 and Its Relationship With Pathological States,” Front Genet, vol. 12, no. July, pp. 1–7, 2021, doi: 10.3389/fgene.2021.693538.

R. Sharma, Y. Chisti, and U. C. Banerjee, “Production, purification, characterization, and applications of lipases,” Biotechnol Adv, vol. 19, no. 8, pp. 627–662, Dec. 2001, doi: 10.1016/S0734-9750(01)00086-6.

A. Kumar et al., “Industrial applications of fungal lipases: a review,” Front Microbiol, vol. 14, 2023, doi: 10.3389/fmicb.2023.1142536.

A. Safdar, F. Ismail, and M. Imran, “Biodegradation of synthetic plastics by the extracellular lipase of Aspergillus niger,” Environmental Advances, vol. 17, no. June, p. 100563, 2024, doi: 10.1016/j.envadv.2024.100563.

F. Hasan, A. A. Shah, and A. Hameed, “Industrial applications of microbial lipases,” Enzyme Microb Technol, vol. 39, no. 2, pp. 235–251, 2006, doi: 10.1016/j.enzmictec.2005.10.016.

A. H. Permana et al., “Pembuatan matriks karboksimetil kitosan untuk amobilisasi enzim lipase,” Warta Akab, vol. 44, no. 283, pp. 20–25, 2020, doi: 10.55075/wa.v44i1.115.

S. Xia, C. Shen, J. Lin, M. Tu, C. P. Tan, and L. Z. Cheong, “Enhanced methanol tolerance of ZIF-8-immobilized Aspergillus oryzae lipase for biodiesel production from used cooking oil,” Renew Energy, vol. 239, no. November 2024, 2025, doi: 10.1016/j.renene.2024.122122.

S. E. Helal, H. M. Abdelhady, K. A. Abou-Taleb, M. G. Hassan, and M. M. Amer, “Lipase from Rhizopus oryzae R1: in-depth characterization, immobilization, and evaluation in biodiesel production,” Journal of Genetic Engineering and Biotechnology, vol. 19, no. 1, p. 1, 2021, doi: 10.1186/s43141-020-00094-y.

H. Veny, M. A. Aiman Bin Abdul Rani, F. Hanim Ab Hamid, N. Aziz, R. Azrina Sazali, and S. Shawaliah Idris, “Enzymatic transesterification of Rubber Seed Oil Using Immobilized Pseudomonas Cepacia Lipase,” J Phys Conf Ser, vol. 2266, no. 1, 2022, doi: 10.1088/1742-6596/2266/1/012013.

N. F. S. Mohamad Nor et al., “Enzymatic Transesterification Using Different Immobilized Lipases and its Biodiesel Effect on Gas Emission,” Bulletin of Chemical Reaction Engineering and Catalysis, vol. 19, no. 2, pp. 265–274, 2024, doi: 10.9767/bcrec.20143.

W. A. Alshehri, N. H. Alghamdi, A. F. Khalel, M. H. Almalki, B. Hadrich, and A. Sayari, “Thermostable CaCO3-Immobilized Bacillus subtilis Lipase for Sustainable Biodiesel Production from Waste Cooking Oil,” Catalysts, vol. 14, no. 4, 2024, doi: 10.3390/catal14040253.

S. Setyahadi, A. L. Machsum, and R. S. Mokodongan, “Kitin sebagai Penopang untuk Amobilisasi Lipase pada Proses Trans-esterifikasi Trigliserida [Chitin as support for lipase immobilization on triglycerida transesterification process],” Prosiding Seminar Nasional Teknik Kimia Kejuangan, pp. 1–5, 2011, [Online]. Available: https://www.academia.edu/102487977/Kitin_sebagai_Penopang_untuk_Amobilisasi_Lipasepada_Proses_Trans_esterifikasi_Trigliserida

F. Ahrari, M. Yousefi, Z. Habibi, and M. Mohammadi, “Cross-linked lipase particles with improved activity; application of a non-toxic linker for cross-linking,” Lwt, vol. 173, no. August 2022, p. 114371, 2023, doi: 10.1016/j.lwt.2022.114371.

M. Kim et al., “Immobilization of cross-linked lipase aggregates onto magnetic beads for enzymatic degradation of polycaprolactone,” J Basic Microbiol, vol. 50, no. 3, pp. 218–226, 2010, doi: 10.1002/jobm.200900099.

N. Hilal, R. Nigmatullin, and A. Alpatova, “Immobilization of cross-linked lipase aggregates within microporous polymeric membranes,” J Memb Sci, vol. 238, no. 1–2, pp. 131–141, 2004, doi: 10.1016/j.memsci.2004.04.002.

M. Aznury, A. Zikri, R. Junaidi, M. Lupikawaty, and C. Oktariyensi, “Pengaruh Metanol dalam Produksi Biodiesel dari Tamanu Oil Menggunakan Katalis Lipase,” Jurnal Selulosa, vol. 12, no. 01, p. 33, 2022, doi: 10.25269/jsel.v12i01.360.

Rheamyta Carissa Siregar and Mahmiah, “Blue Energy dari Mikroalga Chlorella sp. sebagai Bahan Baku Biodiesel,” Jurnal Riset Kelautan Tropis (Journal Of Tropical Marine Research) (J-Tropimar), vol. 5, no. 2, pp. 79–85, 2023, doi: 10.30649/jrkt.v5i2.73.

A. Alatasa, D. N. Putria, M. S. Perdania, T. S. Utamia, and H. Hermansyaha, “Biodiesel Synthesis through the Non-Alcohol Route using the Immobilized Lipase Enzyme from Bacillus subtilis as Biocatalyst,” Int J Adv Sci Eng Inf Technol, vol. 11, no. 3, pp. 1239–1245, 2021, doi: 10.18517/ijaseit.11.3.14784.

W. Du, Y. Xu, D. Liu, and J. Zeng, “Comparative study on lipase-catalyzed transformation of soybean oil for biodiesel production with different acyl acceptors,” J Mol Catal B Enzym, vol. 30, no. 3–4, pp. 125–129, 2004, doi: 10.1016/j.molcatb.2004.04.004.

R. Manurung, M. Widyawati, and R. Afrianto, “The Synthesis Biodiesel from Palm Oil Through Interesterification Using Imobilized Lipase Enzym as Catalyst,” Int J Sci Eng, vol. 7, no. 2, pp. 174–177, 2014, [Online]. Available: http://ejournal.undip.ac.id/index.php/ijse The

M. Y. Liow, E. S. Chan, W. Z. Ng, and C. P. Song, “Enhancing efficiency of ultrasound-assisted biodiesel production catalyzed by Eversa® Transform 2.0 at low lipase concentration: Enzyme characterization and process optimization,” Int J Biol Macromol, vol. 271, no. May, 2024, doi: 10.1016/j.ijbiomac.2024.132538.

T. Priscilla, Muh. Irwan, and Z. Arifin, “Sintesis Biodiesel Dari Minyak Jelantah Dalam Reaktor Ultrasonik,” Jurnal Energi Baru dan Terbarukan, vol. 5, no. 1, pp. 44–56, 2024, doi: 10.14710/jebt.2024.21938.

P. B. Subhedar and P. R. Gogate, “Ultrasonics Sonochemistry Ultrasound assisted intensification of biodiesel production using enzymatic interesterification,” Ultrason Sonochem, vol. 29, pp. 67–75, 2016, doi: 10.1016/j.ultsonch.2015.09.006.

B. Hernández-Santos et al., “Effect of oil extraction assisted by ultrasound on the physicochemical properties and fatty acid profile of pumpkin seed oil (Cucurbita pepo),” Ultrason Sonochem, vol. 31, pp. 429–436, 2016, doi: 10.1016/j.ultsonch.2016.01.029.

PlumX Metrics

Published
2025-05-15
How to Cite
Aulia, C., Lase, Y., Annisa, L., Putri, S. S., Saputri, D., Arif, M., & Marliana, E. (2025). Strategies and Solutions in Overcoming the Challenges of Lipase Utilization in Biodiesel Production: A Review. Jurnal Beta Kimia, 5(1), 80-91. https://doi.org/10.35508/jbk.v5i1.21071

Most read articles by the same author(s)

Obs.: This plugin requires at least one statistics/report plugin to be enabled. If your statistics plugins provide more than one metric then please also select a main metric on the admin's site settings page and/or on the journal manager's settings pages.