Surface Modification of Paper-Based Analytical Devices Using Polymer Inclusion Films as Optical Sensors for The Detection of Cu(II) Ions in Water

  • Oktaviani Ajung(1)
    Chemistry Study Program, Faculty of Science and Engineering, Nusa Cendana University, Adisucipto Street, Penfui, Kupang City, East Nusa Tenggara
  • David Tambaru(2)
    Chemistry Study Program, Faculty of Science and Engineering, Nusa Cendana University, Adisucipto Street, Penfui, Kupang City, East Nusa Tenggara
  • Titus Lapailaka(3)
    Chemistry Study Program, Faculty of Science and Engineering, Nusa Cendana University, Adisucipto Street, Penfui, Kupang City, East Nusa Tenggara
  • Luther Kadang(4)
    Chemistry Study Program, Faculty of Science and Engineering, Nusa Cendana University, Adisucipto Street, Penfui, Kupang City, East Nusa Tenggara
  • Fidelis Nitti(5*)
    Chemistry Study Program, Faculty of Science and Engineering, Nusa Cendana University, Adisucipto Street, Penfui, Kupang City, East Nusa Tenggara
  • (*) Corresponding Author
Keywords: µPAD, polymer inclusion film, zinc sodium salt, Cu(II), PVC, D2EHPA, aliquat-336

Abstract

This study presents the development of a microfluidic paper-based analytical device (µPAD) modified with a polymer inclusion film (PIF) for the detection of Cu(II) ions in aqueous samples. The PIF formulation comprised of polyvinyl chloride (PVC), bis(2-ethylhexyl)phosphoric acid (D2EHPA), and Aliquat-336, while sodium zincon salt served as the colorimetric reagent. The optimization was conducted by systematically varying several key parameters such as PIF composition and volume, reaction time, sample volume, and sample pH. The resulting color intensity was digitally quantified using smartphone, and the results were validated against UV–Vis spectrophotometry as the reference method. The optimized conditions were established at a composition of 50% PVC, 30% D2EHPA, 20% Aliquat-336 and 0.1% zincon, with a PIF volume of 20 µL, a reaction time of 40 minutes, a sample volume of 30 µL, and an optimal pH of 5. Under these conditions, the µPAD demonstrated excellent analytical performance, exhibiting strong linearity (R² = 0.9993), high precision (0.36%), good accuracy (0.368%), recovery rates between 98.18% and 102.44%, a limit of detection (LOD) of 0.143 mg/L, and a limit of quantification (LOQ) of 0.476 mg/L. Furthermore, selectivity assessments indicated that D2EHPA effectively reduced interference from Zn(II) ions, confirming the robustness of the developed sensing platform.

Downloads

Download data is not yet available.

References

D. M. Pancawati, “Maintaining Water Quality for Public Health,” Kompas, Apr. 8, 2022. [Online]. Available: https://www.kompas.id/baca/telaah/2022/04/08/menjaga-kualitas-air- demi-kesehatan-masyarakat. Accessed Oct. 2024.

R. Kumar, K. A. Singh, K. T. Dhiman, G. B. V. S. Lakshmi, P. R. Solanki, and K. Singh, “Transition Metal Dichalcogenide Quantum Dots Based Optical Detection Platform For Cu²⁺ Ions In Water,” Journal of Environmental Chemical Engineering, vol. 12, no. 1, p. 112011, Apr. 2024, doi: 10.1016/j.jece.2024.112011.

B. Keskin, B. Zeytuncu‑Gökoğlu, and I. Koyuncu, “Polymer Inclusion Membrane Applications For Transport Of Metal Ions: A Critical Review,” Chemosphere, vol. 279, 2021, doi: 10.1016/j.chemosphere.2021.130604.

Ministry of Health of the Republic of Indonesia, Regulation of the Minister of Health of the Republic of Indonesia Number 2 of 2023, Ministry of Health, 2023, pp. 10–17.

S. Muhammad-aree and S. Teepoo, “On-site detection of heavy metals in wastewater using a single paper strip integrated with a smartphone,” Analytical and Bioanalytical Chemistry, vol. 412, pp. 1395–1405, 2019, doi: 10.1007/s00216-019-02369-x

N. T. Muliawati, D. Siswanta, and N. H. Aprilita, “Development Of A Simple Fe(II) Ion Colorimetric Sensor From The Immobilization Of 1,10-Phenanthroline In Alginate/Pectin Film,” Indonesian Journal of Chemistry, vol. 21, no. 2, pp. 411–420, 2021, doi: 10.22146/ijc.56759.

P. Kamnoet, W. Aeungmaitrepirom, R. F. Menger, and C. S. Henry, “Highly Selective Simultaneous Determination Of Cu(II), Co(II), Ni(II), Hg(II), And Mn(II) In Water Samples Using Microfluidic Paper-Based Analytical Devices,” Analyst, vol. 146, no. 7, pp. 2229–2239, 2021, doi: 10.1039/D0AN02200D.

F. Nitti, O. Th. E. Selan, B. Hoque, D. Tambaru, and M. C. Djunaidi, “Improving the performance of polymer inclusion membranes in separation process using alternative base polymers,” Indonesian Journal of Chemistry, vol. 22, no. 1, pp. 284–302, 2022, doi: 10.22146/ijc.68311.

B. Kuswandi, F. Nitti, M. I. G. S. Almeida, and S. D. Kolev, “Water monitoring using polymer inclusion membranes: a review,” Environmental Chemistry Letters, vol. 18, no. 1, pp. 129–150, 2020, doi: 10.1007/s10311-019-00930-9.

F. Sellami, S. Marais, O. Kebiche‑Senhadji, Y. Kobzar, and K. Fatyeyeva, “Poly(Vinyl Chloride)-Based Advanced Polymer Inclusion Membranes With Aliquat 336 And Inorganic Filler For Efficient Cr(VI) Removal,” Chemical Engineering Journal, vol. 493, p. 152056, 2024, doi: 10.1016/j.cej.2024.152056.

F. Nitti, A. A. Boliona, F. O. Nitbani, J. N. Naat, T. Lapailaka, L. Kadang, R. K. Pingak, and A. A. Kiswandono, “Fabrication of Polymer Inclusion Membrane Using Recycled Polyvinyl Chloride as Sustainable Alternative Support Polymer for the Extraction of Zn(II) From Water,” Journal of Applied Polymer Science, vol. 142, no. 34, p. e57365, doi: 10.1002/app.57365.

P. Richter, M. I. Tora, A. E. Tapia, and E. Fuenzalida, “Flow Injection Photometric Determination Of Zinc And Copper With Zincon Based On The Variation Of The Stability Of The Complexes With pH,” Analyst, vol. 122, no. 10, pp. 1045–1048, 1997, doi: 10.1039/A703379F.

F. Nitti, W. A. Ati, P. De Rozari, P. D. Ola, D. Tambaru, and L. Kadang, “Simple Microfluidic Paper-Based Analytical Device (m-PAD) Coupled With Smartphone For Mn(II) Detection Using Tannin As A Green Reagent,” Indonesian Journal Of Chemistry, vol. 23, no. 4, pp. 1095–1107, 2023, doi: 10.22146/ijc.82511.

N. Agustina, “Validation Method for Determination of Niclosamide Monohidrate in Veterinary Medicine Using UV-Vis Spectrophotometry,” Jurnal Ilmiah Farmako Bahari, vol. 11, no. 2, pp. 153–160, 2020.

E. Yunita, D. Yulianto, S. Fatimah, and T. Firanita, “Validation Of UV-Vis Spectrophotometric Method Of Quercetin In Ethanol Extract Of Tamarind Leaf,” Journal of Fundamental and Applied Pharmaceutical Science, vol. 1, no. 1, 2020, doi: 10.18196/jfaps.010102.

T. Kemala, D. Saprudin, and I. S. Permana, “Pembuatan Visual Strip Sensor Ion Besi (II) Dengan Bahan Pendukung Kertas Yang Dilapisi Poliakrilamida,” Chemosensors, vol. 1, pp. 64– 69, 2024, doi: 10.26874/jkk.v7i1.259

S. Ncib, A. Chibani, W. Bouguerra, C. Larchet, L. Dammak, B. Hamrouni, and E. Elaloui, “Separation Of Copper And Nickel From Synthetic Wastewater By Polymer Inclusion Membrane Containing Di(2-Ethylhexyl)Phosphoric Acid,” Polymer Bulletin, vol. 80, no. 11, pp. 12177–12192, 2023, doi: 10.1007/s00289-022-04634-z.

B. Hoque, M. I. G. S. Almeida, R. W. Cattrall, T. G. Gopakumar, and S. D. Kolev, “Effect Of Cross-Linking On The Performance Of Polymer Inclusion Membranes (PIMs) For The Extraction, Transport And Separation Of Zn(II),” Journal of Membrane Science, vol. 589, p. 117256, 2019, doi: 10.1016/j.memsci.2019.117256.

M. L. Firdaus, A. Aprian, N. Meileza, M. Hitsmi, R. Elvia, L. Rahmidar, and R. Khaydarov, “Smartphone Coupled With A Paper-Based Colorimetric Device For Sensitive And Portable Mercury Ion Sensing,” Chemosensors, vol. 7, no. 2, 2019, doi: 10.3390/chemosensors7020025.

G. Alberti, L. R. Magnaghi, M. Iurato, C. Zanoni, and R. Biesuz, “Colorimetric Paper- Based Analytical Devices (PADs) Backed By Chemometrics For Pd(II) Detection,” Sensors, vol. 23, no. 17, 2023, doi: 10.3390/s23177425

O. Mozgova, M. Blazheyevskiy, L. Kryskiw, T. Kucher, O. Shliusar, and V. Moroz, “A New Spectrophotometric Method For The Quantitative Determination Of Metopimazine Based On The Absorbance Of Its Sulfoxide,” Chemical Papers, vol. 78, pp. 6585–6591, 2024, doi: 10.1007/s11696-024-03558-4.

M. Geetha, K. K. Sadasivuni, M. Al‑Ejji, N. Sivadas, B. Bhattacharyya, F. N. Musthafa, S. Alfarwati, T. J. Promi, S. A. Ahmad, S. Alabed, D. A. Hijazi, F. Alsaedi, and F. N. Al‑Shaibah, “Design And Development Of Inexpensive Paper‑Based Chemosensors For Detection Of Divalent Copper,” Journal of Fluorescence, vol. 33, no. 6, pp. 2327–2338, Apr. 2023, doi: 10.1007/s10895-023-03220-4.

K. Yamada, H. Shibata, K. Suzuki, and D. Citterio, “Toward practical application of paper-based microfluidics for medical diagnostics: state-of-the-art and challenges,” Lab on a Chip, vol. 17, no. 7, pp. 1206–1249, 2017, doi: 10.1039/c6lc01577h.

P. Aryal and C. S. Henry, “Advancements and challenges in microfluidic paper-based analytical devices: design, manufacturing, sustainability, and field applications,” Frontiers in Lab on a Chip Technologies, vol. 3, Art. no. 1467423, Dec. 2024, doi: 10.3389/frlct.2024.1467423.

PlumX Metrics

Published
2025-11-07
How to Cite
Ajung, O., Tambaru, D., Lapailaka, T., Kadang, L., & Nitti, F. (2025). Surface Modification of Paper-Based Analytical Devices Using Polymer Inclusion Films as Optical Sensors for The Detection of Cu(II) Ions in Water. Jurnal Beta Kimia, 5(2), 16-32. https://doi.org/10.35508/jbk.v5i2.24436

Most read articles by the same author(s)

Obs.: This plugin requires at least one statistics/report plugin to be enabled. If your statistics plugins provide more than one metric then please also select a main metric on the admin's site settings page and/or on the journal manager's settings pages.