Comparison of Cellulose Extraction Methods from Lontar (Borassus flabellifer) and Salak (Salacca zalaacca) Fronds
Abstract
Palmyra fronds and salak fronds are waste products from the palmyra and salak plants that have not been optimally utilized. However, the high cellulose content in these fronds offers potential applications across various fields. This study aimed to extract and compare cellulose from lontar (Borassus flabellifer) and salak (Salacca zalacca) frond waste using two methods: alkaline sodium hydroxide (NaOH) solvent and nitric acid (HNO₃) hydrolysis. After soaking and heating, the extraction was performed through a bleaching process. The yield results showed that lontar fronds produced the highest yield of 64.22% using the acid hydrolysis method, while salak fronds yielded 46.8%. The cellulose obtained from lontar fronds was gray, and from salak fronds, it was white, indicating differences in purity. After treatment, the disappearance of the carbonyl group (C=O) in the FTIR functional group analysis indicated successful delignification. Common cellulose functional groups such as O-H, C-H, and C-O, as well as β-1,4 glycosidic bands, were detected at wave numbers 895-897 cm⁻¹, indicating that the cellulose structure was well preserved. Cellulose from both lontar and salak fronds has great potential to serve as an environmentally friendly alternative raw material for applications in bioplastics, bioethanol, and other cellulose derivatives.
Downloads
References
J. Sun, B. Liu, H. Rustiami, H. Xiao, X. Shen, and K. Ma, “Mapping Asia Plants: Plant Diversity and a Checklist of Vascular Plants in Indonesia,” Plants, vol. 13, no. 16, 2024, https://doi.org/10.3390/plants13162281.
A. Setiawan, “Keanekaragaman Hayati Indonesia: Masalah dan Upaya Konservasinya,” Indones. J. Conserv., vol. 11, no. 1, pp. 13–21, 2022, https://doi.org/10.15294/ijc.v11i1.34532.
K. Sarifudin, “jurnal β eta kimia Bioethanol Production from Presto Pretreatment of Sorghum Stem by Simultaneous Saccharification and Cofermentation Technique and Purification Using Ende Natural Zeolites,” vol. 4, pp. 58–67, 2024, https://doi.org/10.35508/jbk.v4i1.15473
P. Tumbuhan, “Potensi dan Kebijakan Pengembangan Lontara untuk Menambah Pendapatan Penduduk,” J. Anal. Kebijak. Kehutan., vol. 7, no. 1, pp. 27–45, 2010, https://doi.org/10.20886/jakk.2010.7.1.27-45
M. R. F. Saduk and F. P. Niron, “Kajian Sifat Tarik Serat Pelepah Lontar dengan Singular Fiber Tensile Testing Methode,” J. Mettek, vol. 4, no. 1, p. 8, 2018, https://doi.org/10.24843/mettek.2018.v04.i01.p02.
R. Silaban and A. U. Harahap, “Produksi dan Komposisi Nutrisi Limbah Pelepah Tanaman Salak yang Difermentasi dengan Kapang Pelapuk Putih (Phanerochaete chrysosporium),” J. Livest. Anim. Heal., vol. 4, no. 1, pp. 15–20, 2021, https://doi.org/10.32530/jlah.v4i1.317.
D. Devi, D. Astutik, M. N. Cahyanto, and T. F. Djaafar, “Kandungan Lignin, Hemiselulosa Dan Selulosa Pelepah Salak Pada Perlakuan Awal Secara Fisik Kimia Dan Biologi,” J. Ilm. Rekayasa Pertan. dan Biosist., vol. 7, no. 2, pp. 273–282, 2019, https://doi.org/10.29303/jrpb.v7i2.148.
S. N. H. M. Azmin, N. A. B. M. Hayat, and M. S. M. Nor, “Development and characterization of food packaging bioplastic film from cocoa pod husk cellulose incorporated with sugarcane bagasse fibre,” J. Bioresour. Bioprod., vol. 5, no. 4, pp. 248–255, 2020, https://doi.org/10.1016/j.jobab.2020.10.003.
A. Pandey, M. K. Singh, and A. Singh, “Bacterial cellulose: A smart biomaterial for biomedical applications,” J. Mater. Res., vol. 39, no. 1, pp. 2–18, 2024, https://doi.org/ 10.1557/s43578-023-01116-4.
P. K. Sarangi, R. K. Srivastava, A. K. Singh, U. K. Sahoo, P. Prus, and P. Dziekański, “The Utilization of Jackfruit (Artocarpus heterophyllus L.) Waste towards Sustainable Energy and Biochemicals: The Attainment of Zero-Waste Technologies,” Sustain., vol. 15, no. 16, 2023, https://doi.org/10.3390/su151612520.
P. Lukova, P. Katsarov, and B. Pilicheva, “Application of Starch, Cellulose, and Their Derivatives in the Development of Microparticle Drug-Delivery Systems,” Polymers (Basel)., vol. 15, no. 17, 2023, https://doi.org/10.3390/polym15173615.
F. S. Samara, N. Novia, and E. Melwita, “Enzymatic hydrolysis of cellulose banana stem (alkaline microwave-assisted pre-treatment),” J. Integr. Adv. Eng., vol. 4, no. 1, pp. 21–30, 2024, https://doi.org/10.51662/jiae.v4i1.120.
A. Nang Vu, L. Hoang Nguyen, K. Yoshimura, T. Duy Tran, and H. Van Le, “Cellulose nanocrystals isolated from sugarcane bagasse using the formic/peroxyformic acid process: Structural, chemical, and thermal properties,” Arab. J. Chem., vol. 17, no. 8, p. 105841, 2024, https://doi.org/10.1016/j.arabjc.2024.105841.
L. A. Cabrera-Villamizar, M. Ebrahimi, A. Martínez-Abad, D. Talens-Perales, A. López-Rubio, and M. J. Fabra, “Order matters: Methods for extracting cellulose from rice straw by coupling alkaline, ozone and enzymatic treatments,” Carbohydr. Polym., vol. 328, no. December 2023, 2024, https://doi.org/10.1016/j.carbpol.2023.121746.
Z. Zulnazri, R. Dewi, A. Muarif, A. Fikri, R. Aulia, N. Amalia, and H. Firda. “Characteristics of Cellulose Nanofibrils From Arabica Coffee Skin Prepared by the Acid Hydrolysis,” J. Carbazon, vol. 2, no. 1, pp. 38–49, 2024, https://doi.org/10.24815/jocarbazon.v2i1.38686.
M. Raza and B. Abu-Jdayil, “Extraction of cellulose nanocrystals from date seeds using transition metal complex-assisted hydrochloric acid hydrolysis,” Int. J. Biol. Macromol., vol. 294, no. February 2024, p. 139477, 2025, https://doi.org/10.1016/j.ijbiomac.2025.139477.
M. H. Hasan, S. Hossain, M. L. Rahman, G. M. S. Rahman, M. A. Khan, and M. A. Al Mamun, “Effect of hydrolysis agitation and suspension drying temperature on the synthesis of crystalline cellulose from jute fiber,” Carbohydr. Polym. Technol. Appl., vol. 10, no. March, p. 100769, 2025, https://doi.org/10.1016/j.carpta.2025.100769.
D. T. de Farias, J. Labidi, C. Pedrazzi, D. A. Gatto, P. H. G. D. Cademartori, C. A. Weller, G. T. D. Silva, and T. M. D. Almedia. “Acid-Hydrolysis-Assisted Cellulose Nanocrystal Isolation from Acacia mearnsii de Wild. Wood Kraft Pulp,” Polymers (Basel)., vol. 16, no. 23, pp. 1–13, 2024, https://doi.org/10.3390/polym16233371.
M. Santhi, I. W. Arnata, and L. P. Wrasiati, “Isolasi selulosa dari serat sabut kelapa (cocos nucifera l.) pada variasi suhu dan waktu proses bleaching dengan asam perasetat,” J. Rekayasa Dan Manaj. Agroindustri, vol. 10, no. 3, p. 248, 2022, https://doi.org/10.24843/jrma.2022.v10.i03.p02.
M. Mustikaningrum, R. B. Cahyono, and A. T. Yuliansyah, “Effect of NaOH Concentration in Alkaline Treatment Process for Producing Nano Crystal Cellulose-Based Biosorbent for Methylene Blue,” IOP Conf. Ser. Mater. Sci. Eng., vol. 1053, no. 1, p. 012005, 2021, https://doi.org/10.1088/1757-899x/1053/1/012005.
N. E. Fitriana, A. Suwanto, T. H. Jatmiko, S. Mursiti, and D. J. Prasetyo, “Cellulose extraction from sugar palm (Arenga pinnata) fibre by alkaline and peroxide treatments,” IOP Conf. Ser. Earth Environ. Sci., vol. 462, no. 1, 2020, https://doi.org/10.1088/1755-1315/462/1/012053.
R. S. Abolore, S. Jaiswal, and A. K. Jaiswal, “Green and sustainable pretreatment methods for cellulose extraction from lignocellulosic biomass and its applications: A review,” Carbohydr. Polym. Technol. Appl., vol. 7, no. November 2023, p. 100396, 2024,https://doi.org/10.1016/j.carpta.2023.100396.
A. Rusdin, A. Ahmad, A. Karim, S. Kasim, A. W. Wahab, D. Tahir, E. Rohaeti, P. Taba, Awaluddin, M. Baharuddin, S. Jarre, Sulastri, and H. Karim, “Comparison of Extraction Methods and Characterization of Cellulose from Sugarcane Bagasse (Saccharum officinarum L.) for Bioplastic Food Packaging,” Trop. J. Nat. Prod. Res., vol. 8, no. 12, pp. 9637–9642, 2024, https://doi.org/10.26538/tjnpr/v8i12.42.
Zulnazri, A. P. Putri, R. Dewi, S. Bahri, and Sulhatun, “Karakterisasi Glukosa sebagai Bahan Baku Bioetanol yang Diproduksi dari α-Selulosa Berbasis Limbah Kulit Kopi Arabika,” Teknol. Kim. Unimal, vol. 11, no. 1, pp. 102–111, 2022, doi: https://doi.org/10.29103/jtku.v11i1.7254
F. Sebayang and H. Sembiring, “Synthesis of CMC from palm midrib cellulose as stabilizer and thickening agent in food,” Orient. J. Chem., vol. 33, no. 1, pp. 519–530, 2017, https://doi.org/10.13005/ojc/330162.
U. Mamudu, A. Kabyshev, K. Bekmyrza, K. A. Kuterbekov, and A. Baratova, “Extraction , Preparation and Characterization of Nanocrystalline Cellulose from Lignocellulosic Simpor Leaf Residue,” pp. 1–16, 2025, doi: https://doi.org/10.3390/molecules30071622.
Y. Pratiwi and I. Lestari, “Review : Isolasi α-Selulosa dari Bahan Alam dengan Berbagai Metode Review : Isolation of α-Cellulose from Natural Materials using Various Methods ( Chemical , Physical , Biological ) Review : Isolasi α-Selulosa dari Bahan Alam dengan Berbagai Metode ( Kim,” vol. 9816, 2024, https://doi.org/ 10.22236/farmasains.v11i2.11919
L. Moreira Grilo, F. Sara, F. Rudy; L. Talita Martins, M. Laura, L. Katja, and M. Dina. “Biobased Networks from Lignin/Cellulose via Diels-Alder Click Chemistry,” ACS Appl. Polym. Mater., 2024, https://doi.org/10.1021/acsapm.4c02434.
R. Andalia, R. Rahmi, J. Julinawati, and H. Helwati, “Isolation and characterization of cellulose from rice husk waste and sawdust with chemical method,” J. Nat., vol. 20, no. 1, pp. 6–9, 2020, https://doi.org/10.24815/jn.v20i1.12016.
A. S. Aridi, C. N. Ling, N. A. Ishak, M. Y. Nor Nadiah, M. F. M. Ahmed, and Y. A. Yusof, “ Structural FTIR analysis of cellulose functional groups isolated from Leucaena leucocephala pods using different bleaching agents. ,” agriRxiv, vol. 2020, no. September 2022, 2020, doi: 10.31220/agrirxiv.2020.00026.
N. R. Nurjannah, T. Sudiarti, and L. Rahmidar, “Sintesis dan Karakterisasi Selulosa Termetilasi sebagai Biokomposit Hidrogel,” al-Kimiya, vol. 7, no. 1, pp. 19–27, 2020, https://doi.org/10.15575/ak.v7i1.6490.
R. . Vârban, I. Crisan, D. Varban, A. Ona, L. Olar, A. Stoie, and R. Stefan “applied sciences Comparative FT-IR Prospecting for Cellulose in Stems of Some,” 2021, https://doi.org/10.3390/app11188570
A. Ahmad, S. Fauziah, P. Taba, D. Sondari, S. Syarifuddin, and M. Jannah, “The Effect of Etherification Agent on the Mechanical Properties of Sodium Carboxymethyl Cellulose-based Bioplastic and Its Application As Fruit Packaging,” Egypt. J. Chem., vol. 0, no. 0, pp. 0–0, 2022, https://doi.org/10.21608/ejchem.2022.82891.4075.
A. Yadav, P. Rani, D. K. Yadav, N. Bhardwaj, A. Gupta, and N. R. Bishnoi, “Enhancing Enzymatic Hydrolysis and Delignification of Sugarcane Bagasse Using Different Concentrations of Sodium Alkaline Pretreatment,” Nat. Environ. Pollut. Technol., vol. 23, no. 1, pp. 427–434, 2024, https://doi.org/10.46488/NEPT.2024.v23i01.037.
M. Suneetha, S. Y. Won, S. M. Zo, and S. S. Han, “Fungal Carboxymethyl Chitosan-Impregnated Bacterial Cellulose Hydrogel as Wound-Dressing Agent,” Gels, vol. 9, no. 3, pp. 1–12, 2023, https://doi.org/10.3390/gels9030184.
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License. Copyright is retained by the authors, and articles can be freely used and distributed by others.